Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Chem Theory Comput. 2022 Oct 11;18(10):6334-6344. doi: 10.1021/acs.jctc.2c00616. Epub 2022 Sep 16.
Coarse-grained models have proven helpful for simulating complex systems over long time scales to provide molecular insights into various processes. Methodologies for systematic parametrization of the underlying energy function or force field that describes the interactions among different components of the system are of great interest for ensuring simulation accuracy. We present a new method, potential contrasting, to enable efficient learning of force fields that can accurately reproduce the conformational distribution produced with all-atom simulations. Potential contrasting generalizes the noise contrastive estimation method with umbrella sampling to better learn the complex energy landscape of molecular systems. When applied to the Trp-cage protein, we found that the technique produces force fields that thoroughly capture the thermodynamics of the folding process despite the use of only α-carbons in the coarse-grained model. We further showed that potential contrasting could be applied over large data sets that combine the conformational ensembles of many proteins to improve force field transferability. We anticipate potential contrasting as a powerful tool for building general-purpose coarse-grained force fields.
粗粒化模型已被证明有助于模拟长时间尺度的复杂系统,为各种过程提供分子见解。对于确保模拟准确性,系统地下能量函数或力场参数化的方法,这些力场描述了系统中不同组件之间的相互作用,非常有意义。我们提出了一种新方法,即势对比,以实现能够准确再现全原子模拟产生的构象分布的力场的有效学习。势对比通过使用伞状抽样将噪声对比估计方法推广到更好地学习分子系统的复杂能量景观。当应用于色氨酸笼蛋白时,我们发现尽管在粗粒化模型中仅使用α-碳原子,但该技术产生的力场能够彻底捕获折叠过程的热力学。我们进一步表明,势对比可以应用于组合许多蛋白质构象集合的大数据集,以提高力场的可转移性。我们预计势对比将成为构建通用粗粒化力场的强大工具。