Suppr超能文献

相似文献

1
Contrastive Learning of Coarse-Grained Force Fields.
J Chem Theory Comput. 2022 Oct 11;18(10):6334-6344. doi: 10.1021/acs.jctc.2c00616. Epub 2022 Sep 16.
4
Top-Down Machine Learning of Coarse-Grained Protein Force Fields.
J Chem Theory Comput. 2023 Nov 14;19(21):7518-7526. doi: 10.1021/acs.jctc.3c00638. Epub 2023 Oct 24.
6
Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS.
PLoS One. 2023 Aug 3;18(8):e0288264. doi: 10.1371/journal.pone.0288264. eCollection 2023.
8
The automated optimisation of a coarse-grained force field using free energy data.
Phys Chem Chem Phys. 2021 Nov 10;23(43):24842-24851. doi: 10.1039/d0cp05041e.
9
Coarse-grained protein model with residue orientation energies derived from atomic force fields.
J Phys Chem B. 2009 Nov 5;113(44):14824-30. doi: 10.1021/jp906710c.
10
A Maximum-Likelihood Approach to Force-Field Calibration.
J Chem Inf Model. 2015 Sep 28;55(9):2050-70. doi: 10.1021/acs.jcim.5b00395. Epub 2015 Aug 20.

引用本文的文献

2
Scaling Graph Neural Networks to Large Proteins.
J Chem Theory Comput. 2025 Feb 25;21(4):2055-2066. doi: 10.1021/acs.jctc.4c01420. Epub 2025 Feb 6.
3
On the emergence of machine-learning methods in bottom-up coarse-graining.
Curr Opin Struct Biol. 2025 Feb;90:102972. doi: 10.1016/j.sbi.2024.102972. Epub 2025 Jan 2.
4
Machine learning in biological physics: From biomolecular prediction to design.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311807121. doi: 10.1073/pnas.2311807121. Epub 2024 Jun 24.
5
Transferable Implicit Solvation via Contrastive Learning of Graph Neural Networks.
ACS Cent Sci. 2023 Nov 16;9(12):2286-2297. doi: 10.1021/acscentsci.3c01160. eCollection 2023 Dec 27.
6
Transferable Coarse Graining via Contrastive Learning of Graph Neural Networks.
bioRxiv. 2023 Sep 12:2023.09.08.556923. doi: 10.1101/2023.09.08.556923.
7
OpenABC enables flexible, simplified, and efficient GPU accelerated simulations of biomolecular condensates.
PLoS Comput Biol. 2023 Sep 11;19(9):e1011442. doi: 10.1371/journal.pcbi.1011442. eCollection 2023 Sep.
8
9
Machine learned coarse-grained protein force-fields: Are we there yet?
Curr Opin Struct Biol. 2023 Apr;79:102533. doi: 10.1016/j.sbi.2023.102533. Epub 2023 Jan 31.

本文引用的文献

1
Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy.
Nat Comput Sci. 2021 Nov;1(11):732-743. doi: 10.1038/s43588-021-00155-3. Epub 2021 Nov 22.
3
Unifying coarse-grained force fields for folded and disordered proteins.
Curr Opin Struct Biol. 2022 Feb;72:63-70. doi: 10.1016/j.sbi.2021.08.006. Epub 2021 Sep 15.
5
Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation.
J Chem Theory Comput. 2021 May 11;17(5):3134-3144. doi: 10.1021/acs.jctc.0c01220. Epub 2021 Apr 7.
6
Martini 3: a general purpose force field for coarse-grained molecular dynamics.
Nat Methods. 2021 Apr;18(4):382-388. doi: 10.1038/s41592-021-01098-3. Epub 2021 Mar 29.
7
DeepBAR: A Fast and Exact Method for Binding Free Energy Computation.
J Phys Chem Lett. 2021 Mar 18;12(10):2509-2515. doi: 10.1021/acs.jpclett.1c00189. Epub 2021 Mar 15.
8
Coarse graining molecular dynamics with graph neural networks.
J Chem Phys. 2020 Nov 21;153(19):194101. doi: 10.1063/5.0026133.
9
Computing Absolute Free Energy with Deep Generative Models.
J Phys Chem B. 2020 Nov 12;124(45):10166-10172. doi: 10.1021/acs.jpcb.0c08645. Epub 2020 Nov 3.
10
Targeted free energy estimation via learned mappings.
J Chem Phys. 2020 Oct 14;153(14):144112. doi: 10.1063/5.0018903.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验