Suppr超能文献

论自下而上粗粒化中机器学习方法的出现。

On the emergence of machine-learning methods in bottom-up coarse-graining.

作者信息

Sahrmann Patrick G, Voth Gregory A

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Curr Opin Struct Biol. 2025 Feb;90:102972. doi: 10.1016/j.sbi.2024.102972. Epub 2025 Jan 2.

Abstract

Machine-learning methods have gained significant attention in the computational chemistry community as a viable approach to molecular modeling and analysis. Recent successes in utilizing neural networks to learn atomistic force-fields which 'coarse-grain' electronic structure have inspired similar applications to the thermodynamic coarse-graining of chemical and biological systems. In this review, we discuss the current viability and challenges in using machine-learning methods to represent coarse-grained force-fields, as well as the utility of machine-learning in various aspects of coarse-grained modeling.

摘要

机器学习方法在计算化学领域已备受关注,成为分子建模与分析的一种可行方法。近期利用神经网络学习对电子结构进行“粗粒化”的原子力场取得的成功,激发了在化学和生物系统热力学粗粒化方面的类似应用。在本综述中,我们讨论了使用机器学习方法表示粗粒化力场的当前可行性和挑战,以及机器学习在粗粒化建模各方面的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验