Suppr超能文献

可解释性机器学习分析揭示了大麻使用障碍的表型和神经生物学标志物中的性别差异。

Explainable machine learning analysis reveals sex and gender differences in the phenotypic and neurobiological markers of Cannabis Use Disorder.

机构信息

Department of Psychiatry and Behavioral Sciences, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN, 55414, USA.

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.

出版信息

Sci Rep. 2022 Sep 17;12(1):15624. doi: 10.1038/s41598-022-19804-2.

Abstract

Cannabis Use Disorder (CUD) has been linked to a complex set of neuro-behavioral risk factors. While many studies have revealed sex and gender differences, the relative importance of these risk factors by sex and gender has not been described. We used an "explainable" machine learning approach that combined decision trees [gradient tree boosting, XGBoost] with factor ranking tools [SHapley's Additive exPlanations (SHAP)] to investigate sex and gender differences in CUD. We confirmed that previously identified environmental, personality, mental health, neurocognitive, and brain factors highly contributed to the classification of cannabis use levels and diagnostic status. Risk factors with larger effect sizes in men included personality (high openness), mental health (high externalizing, high childhood conduct disorder, high fear somaticism), neurocognitive (impulsive delay discounting, slow working memory performance) and brain (low hippocampal volume) factors. Conversely, risk factors with larger effect sizes in women included environmental (low education level, low instrumental support) factors. In summary, environmental factors contributed more strongly to CUD in women, whereas individual factors had a larger importance in men.

摘要

大麻使用障碍(CUD)与一系列复杂的神经行为风险因素有关。虽然许多研究揭示了性别差异,但这些风险因素的相对重要性在性别上尚未得到描述。我们使用了一种“可解释”的机器学习方法,该方法结合了决策树[梯度提升树、XGBoost]和因子排名工具[Shapley 的加法解释(SHAP)]来研究 CUD 中的性别差异。我们证实,先前确定的环境、人格、心理健康、神经认知和大脑因素对大麻使用水平和诊断状况的分类有很大贡献。男性中影响较大的风险因素包括人格(高开放性)、心理健康(高外向、高儿童品行障碍、高恐惧躯体化)、神经认知(冲动延迟折扣、工作记忆表现缓慢)和大脑(海马体体积低)因素。相反,女性中影响较大的风险因素包括环境(教育水平低、工具支持低)因素。总之,环境因素对女性的 CUD 贡献更大,而个体因素对男性的重要性更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e3d/9482622/2efdef0dd063/41598_2022_19804_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验