Lichenstein Sarah D, Kiluk Brian D, Potenza Marc N, Garavan Hugh, Chaarani Bader, Banaschewski Tobias, Bokde Arun L W, Desrivières Sylvane, Flor Herta, Grigis Antoine, Gowland Penny, Heinz Andreas, Brühl Rüdiger, Martinot Jean-Luc, Paillère Martinot Marie-Laure, Artiges Eric, Nees Frauke, Orfanos Dimitri Papadopoulos, Poustka Luise, Hohmann Sarah, Holz Nathalie, Baeuchl Christian, Smolka Michael N, Vaidya Nilakshi, Walter Henrik, Whelan Robert, Schumann Gunter, Pearlson Godfrey, Yip Sarah W
Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.
Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.
Biol Psychiatry. 2025 Feb 3. doi: 10.1016/j.biopsych.2025.01.022.
Cannabis use is common, particularly during emerging adulthood when brain development is ongoing, and its use is associated with harmful outcomes for a subset of people. An improved understanding of the neural mechanisms underlying risk for problem-level use is critical to facilitate the development of more effective prevention and treatment approaches.
In the current study, we applied a whole-brain, data-driven, machine learning approach to identify neural features predictive of problem-level cannabis use in a nonclinical sample of college students (n = 191, 58% female) based on reward task functional connectivity data. We further examined whether the identified network would generalize to predict cannabis use in an independent sample of European adolescents/emerging adults (n = 1320, 53% female), whether it would predict clinical characteristics among adults seeking treatment for cannabis use disorder (n = 33, 9% female), and whether it was specific for predicting cannabis versus alcohol use outcomes across datasets.
Results demonstrated identification of a problem cannabis risk network, which generalized to predict cannabis use in an independent sample of adolescents and was linked to increased addiction severity and poorer treatment outcome in a third sample of treatment-seeking adults. Furthermore, the identified network was specific for predicting cannabis versus alcohol use outcomes across all 3 datasets.
Findings provide insight into neural mechanisms of risk for problem-level cannabis use among adolescents/emerging adults. Future work is needed to assess whether targeting this network can improve prevention and treatment outcomes.
大麻使用很常见,尤其是在大脑仍在发育的成年早期,而且其使用与一部分人的有害后果相关。更好地理解问题水平使用风险背后的神经机制对于促进开发更有效的预防和治疗方法至关重要。
在当前研究中,我们应用全脑、数据驱动的机器学习方法,基于奖励任务功能连接数据,在大学生非临床样本(n = 191,58%为女性)中识别预测问题水平大麻使用的神经特征。我们进一步研究了所识别的网络是否能推广到预测欧洲青少年/成年早期独立样本(n = 1320,53%为女性)中的大麻使用,是否能预测寻求大麻使用障碍治疗的成年人的临床特征(n = 33,9%为女性),以及它在跨数据集预测大麻与酒精使用结果方面是否具有特异性。
结果表明识别出了一个问题大麻风险网络,该网络能推广到预测青少年独立样本中的大麻使用,并且与寻求治疗的成年第三样本中成瘾严重程度增加和治疗结果较差有关。此外,所识别的网络在所有3个数据集中对预测大麻与酒精使用结果具有特异性。
研究结果为青少年/成年早期问题水平大麻使用风险的神经机制提供了见解。未来需要开展工作来评估针对该网络是否能改善预防和治疗结果。