文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review.

作者信息

Khan Sohaib Z, Zaidi Asad A, Naseer Muhammad Nihal, AlMohamadi Hamad

机构信息

Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia.

Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan.

出版信息

Front Bioeng Biotechnol. 2022 Sep 2;10:868454. doi: 10.3389/fbioe.2022.868454. eCollection 2022.


DOI:10.3389/fbioe.2022.868454
PMID:36118570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9478561/
Abstract

Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010-20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials' size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/cec4eae9466f/fbioe-10-868454-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/0f5b5c313f6a/fbioe-10-868454-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/dfe0c9a40058/fbioe-10-868454-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/9146ec2f738b/fbioe-10-868454-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/b7cc983b7491/fbioe-10-868454-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/41acd12ded79/fbioe-10-868454-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/78b5294eadf8/fbioe-10-868454-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/5805a8bb7863/fbioe-10-868454-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/c6a60fe6d26f/fbioe-10-868454-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/c4eb33d08b78/fbioe-10-868454-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/81fd6f8b031d/fbioe-10-868454-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/f20ae056b1de/fbioe-10-868454-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/cec4eae9466f/fbioe-10-868454-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/0f5b5c313f6a/fbioe-10-868454-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/dfe0c9a40058/fbioe-10-868454-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/9146ec2f738b/fbioe-10-868454-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/b7cc983b7491/fbioe-10-868454-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/41acd12ded79/fbioe-10-868454-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/78b5294eadf8/fbioe-10-868454-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/5805a8bb7863/fbioe-10-868454-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/c6a60fe6d26f/fbioe-10-868454-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/c4eb33d08b78/fbioe-10-868454-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/81fd6f8b031d/fbioe-10-868454-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/f20ae056b1de/fbioe-10-868454-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/9478561/cec4eae9466f/fbioe-10-868454-g012.jpg

相似文献

[1]
Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review.

Front Bioeng Biotechnol. 2022-9-2

[2]
Upflow anaerobic sludge blanket reactor--a review.

Indian J Environ Health. 2001-4

[3]
A state-of-the-art review on the application of nanomaterials for enhancing biogas production.

J Environ Manage. 2019-9-25

[4]
Application of nano-structured materials in anaerobic digestion: Current status and perspectives.

Chemosphere. 2019-5-2

[5]
Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.

Environ Sci Pollut Res Int. 2009-6-5

[6]
Enzymatic pretreatment and anaerobic co-digestion as a new technology to high-methane production.

Appl Microbiol Biotechnol. 2020-5

[7]
Effect of nano-ZnO on biogas generation from simulated landfills.

Waste Manag. 2017-1-23

[8]
Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges.

Bioresour Technol. 2021-10

[9]
Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

Waste Manag Res. 2014-7

[10]
Enzyme research and applications in biotechnological intensification of biogas production.

Crit Rev Biotechnol. 2011-8-19

引用本文的文献

[1]
A Comprehensive Approach to Nanotechnology Innovations in Biogas Production: Advancing Efficiency and Sustainability.

Nanomaterials (Basel). 2025-8-21

[2]
Potential substrates for biogas production through anaerobic digestion-an alternative energy source.

Heliyon. 2024-11-26

[3]
Nano-based biofuel production from low-cost lignocellulose biomass: environmental sustainability and economic approach.

Bioprocess Biosyst Eng. 2024-7

本文引用的文献

[1]
Impact of electro-conductive nanoparticles additives on anaerobic digestion performance - A review.

Bioresour Technol. 2021-12

[2]
The role of conductive nanoparticles in anaerobic digestion: Mechanism, current status and future perspectives.

Chemosphere. 2021-10

[3]
Innovative nanocomposite formulations for enhancing biogas and biofertilizers production from anaerobic digestion of organic waste.

Bioresour Technol. 2020-4-8

[4]
Influence of nanoscale zero-valent iron and magnetite nanoparticles on anaerobic digestion performance and macrolide, aminoglycoside, β-lactam resistance genes reduction.

Bioresour Technol. 2019-9-9

[5]
Nanoparticle induced biological disintegration: A new phase separated pretreatment strategy on microalgal biomass for profitable biomethane recovery.

Bioresour Technol. 2019-6-8

[6]
Enhanced mesophilic anaerobic digestion of waste sludge with the iron nanoparticles addition and kinetic analysis.

Sci Total Environ. 2019-5-19

[7]
More than sulfidation: Roles of biogenic sulfide in attenuating the impacts of CuO nanoparticle on antibiotic resistance genes during sludge anaerobic digestion.

Water Res. 2019-4-12

[8]
Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges.

J Environ Manage. 2019-3-29

[9]
Effects of ZnO nanoparticles on the performance of anaerobic membrane bioreactor: An attention to the characteristics of supernatant, effluent and biomass community.

Environ Pollut. 2019-2-26

[10]
The response of nitrogen removal and related bacteria within constructed wetlands after long-term treating wastewater containing environmental concentrations of silver nanoparticles.

Sci Total Environ. 2019-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索