Suppr超能文献

超声影像组学特征预测乳腺良性肿瘤聚焦超声手术剂量学:一项回顾性研究

Ultrasound radiomics features predicting the dosimetry for focused ultrasound surgery of benign breast tumor: A retrospective study.

作者信息

Liang Mengdi, Zhang Cai, Xia Tiansong, Chen Rui, Wang Xinyang, Weng Miaomiao, Xie Hui, Chen Lin, Liu Xiaoan, Wang Shui

机构信息

Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.

State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China.

出版信息

Front Genet. 2022 Sep 6;13:969409. doi: 10.3389/fgene.2022.969409. eCollection 2022.

Abstract

To investigate the correlation between pre-ablation ultrasound radiomics features and the sonication energy for focused ultrasound surgery (FUS) of benign breast tumors. 53 benign breast tumors of 28 patients treated by ultrasound-guided focused ultrasound surgery (USgFUS) were included in this study. The sonication energy per unit volume of each tumor was calculated. Three-quarter point was chosen as the cut-off to divide the 53 included tumors into high sonication energy (HSE, = 14) and low sonication energy (LSE, = 39) groups. For each tumor, the region of interest (ROI) of both the tumor itself (tROI) and the near field tissue (nfROI) were delineated and analyzed separately using ImageJ software. Pearson correlation coefficient and multiple linear regression analysis were used for radiomics feature selection. To explore the diagnostic performance of different ultrasound radiomics features, a receiver operating characteristic (ROC) curve analysis was performed. In total of 68 radiomics features were extracted from pre-ablation ultrasound images of each tumor. Of all radiomics features, BX in tROI ( < 0.001), BX ( = 0.001) and Circ ( = 0.019) in nfROI were independently predictive features of sonication energy per unit volume. The ROC curves showed that the area under the curve (AUC) values of BX in tROI, BX, and Circ in nfROI were 0.797, 0.787 and 0.822, respectively. This study provided three radiomics features of pre-ablation ultrasound image as predictors of sonication dose for FUS in benign breast tumors. Further clinical trials are needed to confirm the predictive effect of these radiomics features.

摘要

研究消融前超声影像组学特征与良性乳腺肿瘤聚焦超声手术(FUS)超声能量之间的相关性。本研究纳入了28例接受超声引导下聚焦超声手术(USgFUS)治疗的53个良性乳腺肿瘤。计算每个肿瘤的单位体积超声能量。选择四分之三点作为截断值,将53个纳入的肿瘤分为高超声能量(HSE,n = 14)和低超声能量(LSE,n = 39)组。对于每个肿瘤,使用ImageJ软件分别勾勒并分析肿瘤本身(tROI)和近场组织(nfROI)的感兴趣区域(ROI)。采用Pearson相关系数和多元线性回归分析进行影像组学特征选择。为了探索不同超声影像组学特征的诊断性能,进行了受试者操作特征(ROC)曲线分析。从每个肿瘤的消融前超声图像中总共提取了68个影像组学特征。在所有影像组学特征中,tROI中的BX(P < 0.001)、nfROI中的BX(P = 0.001)和Circ(P = 0.019)是单位体积超声能量的独立预测特征。ROC曲线显示,tROI中的BX、nfROI中的BX和Circ的曲线下面积(AUC)值分别为0.797、0.787和0.822。本研究提供了消融前超声图像的三个影像组学特征作为良性乳腺肿瘤FUS超声剂量的预测指标。需要进一步的临床试验来证实这些影像组学特征的预测效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2267/9479455/fd58fdcff8fa/fgene-13-969409-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验