Choi In Sik, Park Seongho, Jeon Sangheon, Kwon Young Woo, Park Rowoon, Taylor Robert A, Kyhm Kwangseuk, Hong Suck Won
Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, Pusan National University, Busan, 46241 Republic of Korea.
Research Center for Dielectric and Advanced Matter Physics, Pusan National University, Busan, 46241 Republic of Korea.
Microsyst Nanoeng. 2022 Sep 14;8:98. doi: 10.1038/s41378-022-00399-7. eCollection 2022.
As a new concept in materials design, a variety of strategies have been developed to fabricate optical microlens arrays (MLAs) that enable the miniaturization of optical systems on the micro/nanoscale to improve their characteristic performance with unique optical functionality. In this paper, we introduce a cost-effective and facile fabrication process on a large scale up to ~15 inches via sequential lithographic methods to produce thin and deformable hexagonally arranged MLAs consisting of polydimethylsiloxane (PDMS). Simple employment of oxygen plasma treatment on the prestrained MLAs effectively harnessed the spontaneous formation of highly uniform nanowrinkled structures all over the surface of the elastomeric microlenses. With strain-controlled tunability, unexpected optical diffraction patterns were characterized by the interference combination effect of the microlens and deformable nanowrinkles. Consequently, the hierarchically structured MLAs presented here have the potential to produce desirable spatial arrangements, which may provide easily accessible opportunities to realize microlens-based technology by tunable focal lengths for more advanced micro-optical devices and imaging projection elements on unconventional security substrates.
作为材料设计中的一个新概念,人们已经开发出多种策略来制造光学微透镜阵列(MLA),这些策略能够在微/纳米尺度上实现光学系统的小型化,从而通过独特的光学功能来提升其性能。在本文中,我们介绍了一种具有成本效益且简便的大规模制造工艺,该工艺通过顺序光刻法可制造出尺寸达约15英寸的薄且可变形的由聚二甲基硅氧烷(PDMS)组成的六边形排列的MLA。在预拉伸的MLA上简单地采用氧等离子体处理,有效地利用了在弹性微透镜表面自发形成高度均匀的纳米皱纹结构。通过应变控制的可调性,微透镜和可变形纳米皱纹的干涉组合效应表征了意想不到的光学衍射图案。因此,本文提出的分层结构的MLA有潜力产生理想的空间排列,这可能为通过可调焦距实现基于微透镜的技术提供容易获得的机会,以用于更先进的微光学器件以及非常规安全基板上的成像投影元件。