Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208, United States.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
ACS Nano. 2022 Oct 25;16(10):16776-16783. doi: 10.1021/acsnano.2c06419. Epub 2022 Sep 19.
Miniaturized near-infrared semiconductor lasers that are able to generate coherent light with low energy consumption have widespread applications in fields such as optical interconnects, neuromorphic computing, and deep-tissue optogenetics. With optical transitions at near-infrared wavelengths, diameter-tunable electronic structures, and superlative optoelectronic properties, semiconducting single-walled carbon nanotubes (SWCNTs) are promising candidates for nanolaser applications. However, despite significant efforts in this direction and recent progress toward enhancing spontaneous emission from SWCNTs through Purcell effects, SWCNT-based excitonic lasers have not yet been demonstrated. Leveraging an optimized cavity-emitter integration scheme enabled by a self-assembly process, here we couple SWCNT emission to the whispering gallery modes supported by polymer microspheres, resulting in room temperature excitonic lasing with an average lasing threshold of 4.5 kW/cm. The high photostability of SWCNTs allows stable lasing for prolonged duration with minimal degradation. This experimental realization of excitonic lasing from SWCNTs, combined with their versatile electronic and optical properties that can be further controlled by chemical modification, offers far-reaching opportunities for tunable near-infrared nanolasers that are applicable for optical signal processing, in vivo biosensing, and optoelectronic devices.
能够以低能耗产生相干光的小型化近红外半导体激光器在光互连、神经形态计算和深层组织光遗传学等领域有广泛的应用。半导体单壁碳纳米管 (SWCNT) 具有近红外波长的光学跃迁、可调直径的电子结构和卓越的光电性能,是纳米激光器应用的有前途的候选材料。然而,尽管在这方面做出了巨大的努力,并在通过 Purcell 效应增强 SWCNT 自发辐射方面取得了最近的进展,但基于 SWCNT 的激子激光器尚未得到证实。通过自组装过程实现的优化腔发射器集成方案,我们在这里将 SWCNT 发射与聚合物微球支持的 whispering gallery 模式耦合,从而在室温下实现平均激射阈值为 4.5kW/cm 的激子激射。SWCNT 的高光稳定性允许在最小降解的情况下长时间稳定激射。这种 SWCNT 激子激射的实验实现,结合了其通过化学修饰可以进一步控制的多功能电子和光学性质,为可调谐近红外纳米激光器提供了广泛的机会,适用于光信号处理、体内生物传感和光电设备。