Mazuryk Jarosław, Paszke Piotr, Pawlak Dorota A, Kutner Włodzimierz, Sharma Piyush Sindhu
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
ACS Sens. 2025 Aug 22;10(8):5314-5338. doi: 10.1021/acssensors.5c00057. Epub 2025 Jul 31.
The present article critically reviews the fabrication, characterization, and sensor applications of polymer-based whispering gallery mode resonators (WGMRs). Those resonators utilize continuous internal light reflections along curved surfaces to produce sharp resonance peaks influenced by the resonator's geometry, which appeared effective for high-sensitivity optical sensing. Polymer-based WGMRs leverage unique polymer characteristics to enhance sensor performance through parameters like quality factor (QF), free spectral range (FSR), resonance mode shifts, polarization modes, bulk refractive index (RI), sensitivity per refractive index unit (RIU), and thermo-optic effects. All-polymer WGMRs, i.e., resonators entirely made from polymers, offer design flexibility, biocompatibility, low thermal conductivity, and integration capabilities for high sensitivity, detectability, and selectivity. Polymer-coated optical fiber WGMRs improve light-material interaction, support advanced composites, integrate with microfluidics for on-chip diagnostics, and enable remote, multiplexed sensing. (Polymer shell)-(inorganic core) composite-functionalized WGMRs combine the high QFs of inorganic materials with polymers' flexibility and functionalization, providing synergistic optical properties, enhanced sensitivity, detectability, and stability. These advancements make polymer-based WGMR sensors promising for biomedical diagnostics, environmental pollution monitoring, and industrial process control. Future research will presumably optimize fabrication techniques, explore novel polymers, and integrate advanced signal processing for real-time analysis, connected with the Internet-of-Things (IoT) and cloud databases to revolutionize optical and photonic sensing platforms.
本文对基于聚合物的回音壁模式谐振器(WGMR)的制造、表征及传感器应用进行了批判性综述。这些谐振器利用沿弯曲表面的连续内部光反射来产生受谐振器几何形状影响的尖锐共振峰,这对于高灵敏度光学传感似乎是有效的。基于聚合物的WGMR利用独特的聚合物特性,通过品质因数(QF)、自由光谱范围(FSR)、共振模式偏移、偏振模式、体折射率(RI)、每折射率单位(RIU)的灵敏度以及热光效应等参数来提高传感器性能。全聚合物WGMR,即完全由聚合物制成的谐振器,具有设计灵活性、生物相容性、低导热性以及用于高灵敏度、可检测性和选择性的集成能力。聚合物包覆光纤WGMR改善了光与材料的相互作用,支持先进复合材料,与微流体集成用于芯片上诊断,并实现远程、多路复用传感。(聚合物壳)-(无机芯)复合功能化WGMR将无机材料的高QF与聚合物的灵活性和功能化相结合,提供协同光学特性、增强的灵敏度、可检测性和稳定性。这些进展使基于聚合物的WGMR传感器在生物医学诊断、环境污染监测和工业过程控制方面具有广阔前景。未来的研究可能会优化制造技术,探索新型聚合物,并集成先进的信号处理以进行实时分析,与物联网(IoT)和云数据库相连,从而彻底改变光学和光子传感平台。