Suppr超能文献

具有受激发射拉曼散射显微镜的延时活细胞成像的柔性腔。

A Flexible Chamber for Time-Lapse Live-Cell Imaging with Stimulated Raman Scattering Microscopy.

机构信息

Department of Biomedical Engineering, Binghamton University, State University of New York.

Department of Biomedical Engineering, Binghamton University, State University of New York;

出版信息

J Vis Exp. 2022 Aug 31(186). doi: 10.3791/64449.

Abstract

Stimulated Raman scattering (SRS) microscopy is a label-free chemical imaging technology. Live-cell imaging with SRS has been demonstrated for many biological and biomedical applications. However, long-term time-lapse SRS imaging of live cells has not been widely adopted. SRS microscopy often uses a high numerical aperture (NA) water-immersion objective and a high NA oil-immersion condenser to achieve high-resolution imaging. In this case, the gap between the objective and the condenser is only a few millimeters. Therefore, most commercial stage-top environmental chambers cannot be used for SRS imaging because of their large thickness with a rigid glass cover. This paper describes the design and fabrication of a flexible chamber that can be used for time-lapse live-cell imaging with transmitted SRS signal detection on an upright microscope frame. The flexibility of the chamber is achieved by using a soft material - a thin natural rubber film. The new enclosure and chamber design can be easily added to an existing SRS imaging setup. The testing and preliminary results demonstrate that the flexible chamber system enables stable, long-term, time-lapse SRS imaging of live cells, which can be used for various bioimaging applications in the future.

摘要

受激拉曼散射(SRS)显微镜是一种无标记的化学成像技术。已经证明,SRS 可用于许多生物和生物医学应用的活细胞成像。然而,长期的活细胞 SRS 成像并未被广泛采用。SRS 显微镜通常使用高数值孔径(NA)水浸物镜和高 NA 油浸聚光镜来实现高分辨率成像。在这种情况下,物镜和聚光镜之间的间隙只有几毫米。因此,由于其刚性玻璃盖的厚度较大,大多数商用的台式环境室都不能用于 SRS 成像。本文介绍了一种柔性室的设计和制造,该柔性室可用于在正置显微镜架上进行具有透射 SRS 信号检测的活细胞延时成像。通过使用柔软的材料-薄天然橡胶膜来实现腔室的灵活性。新的外壳和腔室设计可以很容易地添加到现有的 SRS 成像设置中。测试和初步结果表明,柔性腔系统能够稳定、长期、延时地对活细胞进行 SRS 成像,这可用于未来的各种生物成像应用。

相似文献

3
Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope.
J Biophotonics. 2019 Sep;12(9):e201900028. doi: 10.1002/jbio.201900028. Epub 2019 Jun 14.
4
Cellular Imaging Using Stimulated Raman Scattering Microscopy.
Anal Chem. 2019 Aug 6;91(15):9333-9342. doi: 10.1021/acs.analchem.9b02095. Epub 2019 Jul 9.
5
Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope.
Opt Express. 2020 Sep 28;28(20):30210-30221. doi: 10.1364/OE.404869.
6
Imaging chemistry inside living cells by stimulated Raman scattering microscopy.
Methods. 2017 Sep 1;128:119-128. doi: 10.1016/j.ymeth.2017.07.020. Epub 2017 Jul 23.
8
Quantitative Stimulated Raman Scattering Microscopy: Promises and Pitfalls.
Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):269-289. doi: 10.1146/annurev-anchem-061020-015110. Epub 2022 Mar 17.
9
Expanding the Range of Bioorthogonal Tags for Multiplex Stimulated Raman Scattering Microscopy.
Angew Chem Int Ed Engl. 2023 Nov 27;62(48):e202311530. doi: 10.1002/anie.202311530. Epub 2023 Oct 27.
10
Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity.
Nat Commun. 2019 Nov 21;10(1):5318. doi: 10.1038/s41467-019-13230-1.

引用本文的文献

1
Label-Free Longitudinal Imaging of Single Cell Drug Response with a 3D-Printed Cell Culture Platform.
bioRxiv. 2025 Aug 2:2025.08.02.668298. doi: 10.1101/2025.08.02.668298.
2
Non-invasive applications of Raman spectroscopy in assisted reproduction.
Front Endocrinol (Lausanne). 2025 May 8;16:1577702. doi: 10.3389/fendo.2025.1577702. eCollection 2025.
4
Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo.
Nat Commun. 2025 Jan 28;16(1):1127. doi: 10.1038/s41467-025-56450-4.
5
Artificial Intelligence-Assisted Stimulated Raman Histology: New Frontiers in Vibrational Tissue Imaging.
Cancers (Basel). 2024 Nov 22;16(23):3917. doi: 10.3390/cancers16233917.
6
Coherent Raman Microscopy: from instrumentation to applications.
J Vis Exp. 2023;191. doi: 10.3791/64882. Epub 2023 Jan 20.

本文引用的文献

1
Label-Free Imaging of Lipid Droplets in Prostate Cells Using Stimulated Raman Scattering Microscopy and Multivariate Analysis.
Anal Chem. 2022 Jun 28;94(25):8899-8908. doi: 10.1021/acs.analchem.2c00236. Epub 2022 Jun 14.
2
Stimulated Raman scattering microscopy in chemistry and life science - Development, innovation, perspectives.
Biotechnol Adv. 2022 Nov;60:108003. doi: 10.1016/j.biotechadv.2022.108003. Epub 2022 Jun 9.
3
Management of oral biofilms by nisin delivery in adhesive microdevices.
Eur J Pharm Biopharm. 2021 Oct;167:83-88. doi: 10.1016/j.ejpb.2021.07.007. Epub 2021 Jul 22.
4
Dissecting lipid droplet biology with coherent Raman scattering microscopy.
J Cell Sci. 2022 Mar 1;135(5). doi: 10.1242/jcs.252353. Epub 2021 May 11.
6
High-Throughput Raman Flow Cytometry and Beyond.
Acc Chem Res. 2021 May 4;54(9):2132-2143. doi: 10.1021/acs.accounts.1c00001. Epub 2021 Mar 31.
8
Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles.
Pharmaceutics. 2020 Oct 22;12(11):1004. doi: 10.3390/pharmaceutics12111004.
10
Live-cell imaging in the era of too many microscopes.
Curr Opin Cell Biol. 2020 Oct;66:34-42. doi: 10.1016/j.ceb.2020.04.008. Epub 2020 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验