Dunnington Erin L, Chiu King Wai, Wong Brian S, Chales-Antonio Anthony, Pang Victoria, Wu Yiyi, Fu Dan
Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
bioRxiv. 2025 Aug 2:2025.08.02.668298. doi: 10.1101/2025.08.02.668298.
Image-based phenotypic screening has emerged as a powerful tool for revealing single-cell heterogeneity and dynamic phenotypic responses in preclinical drug discovery. Compared to traditional static end-point assays, live-cell longitudinal imaging captures the temporal trajectories of individual cells, including transient morphological adaptations, motility shifts, and divergent subpopulation behaviors, enabling high content features and more robust early prediction of treatment outcomes. Fluorescence-based screening, while highly specific, is constrained in live-cell contexts by broad spectral overlaps (limiting multiplexing to fewer than six channels), bulky fluorophores that may perturb small-molecule interactions, and photobleaching or phototoxicity under repeated excitation. Stimulated Raman scattering (SRS) microscopy overcomes these barriers by delivering label-free, quantitative chemical contrasts alongside morphological information. Here, we present a low-cost, 3D printed cell culture platform compatible with the stringent optical requirements of SRS microscopy. This set up enables real-time drug delivery and continuous monitoring of biochemical and morphological changes in living cells during 24-hour time-lapse imaging with minimal photodamage. We outline a processing pipeline for longitudinal SRS images to extract chemical and morphological features of single live cells. Using this system, we showcase time-lapse SRS microscopy as a tool to map heterogenous drug-induced single-cell response over time, enabling the identification of varying trajectories within complex cell populations. By parallelizing multi-well perfusion with label-free chemical imaging, our approach offers a pathway toward high-throughput pharmacodynamic assays for the acceleration of phenotypic screening and personalized medicine.
基于图像的表型筛选已成为临床前药物发现中揭示单细胞异质性和动态表型反应的强大工具。与传统的静态终点检测相比,活细胞纵向成像能够捕捉单个细胞的时间轨迹,包括短暂的形态适应、运动变化和不同亚群行为,从而实现高内涵特征分析,并对治疗结果进行更可靠的早期预测。基于荧光的筛选虽然具有高度特异性,但在活细胞环境中受到广泛光谱重叠(将复用限制在少于六个通道)、可能干扰小分子相互作用的大体积荧光团以及重复激发下的光漂白或光毒性的限制。受激拉曼散射(SRS)显微镜通过在提供形态学信息的同时提供无标记的定量化学对比,克服了这些障碍。在这里,我们展示了一种低成本的3D打印细胞培养平台,该平台与SRS显微镜的严格光学要求兼容。这种设置能够在24小时延时成像过程中实现实时药物递送,并对活细胞中的生化和形态变化进行连续监测,同时将光损伤降至最低。我们概述了一个用于纵向SRS图像的处理流程,以提取单个活细胞的化学和形态特征。使用该系统,我们展示了延时SRS显微镜作为一种工具,用于绘制随时间变化的异质药物诱导的单细胞反应,从而能够识别复杂细胞群体中的不同轨迹。通过将多孔灌注与无标记化学成像并行化,我们的方法为加速表型筛选和个性化医疗的高通量药效学检测提供了一条途径。