Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
J Extracell Vesicles. 2022 Sep;11(9):e12266. doi: 10.1002/jev2.12266.
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, prognostics, and therapeutics, ascribed to their distinctive cargo reflective of pathophysiological status, active involvement in intercellular communication, as well as their ubiquity and stability in bodily fluids. As a result, the field of sEV research has expanded exponentially. Nevertheless, there is a lack of standardisation in methods for sEV isolation from cells grown in serum-containing media. The majority of researchers use serum-containing media for sEV harvest and employ ultracentrifugation as the primary isolation method. Ultracentrifugation is inefficient as it is devoid of the capacity to isolate high sEV yields without contamination of non-sEV materials or disruption of sEV integrity. We comprehensively evaluated a protocol using tangential flow filtration and size exclusion chromatography to isolate sEVs from a variety of human and murine cancer cell lines, including HeLa, MDA-MB-231, EO771 and B16F10. We directly compared the performance of traditional ultracentrifugation and tangential flow filtration methods, that had undergone further purification by size exclusion chromatography, in their capacity to separate sEVs, and rigorously characterised sEV properties using multiple quantification devices, protein analyses and both image and nano-flow cytometry. Ultracentrifugation and tangential flow filtration both enrich consistent sEV populations, with similar size distributions of particles ranging up to 200 nm. However, tangential flow filtration exceeds ultracentrifugation in isolating significantly higher yields of sEVs, making it more suitable for large-scale research applications. Our results demonstrate that tangential flow filtration is a reliable and robust sEV isolation approach that surpasses ultracentrifugation in yield, reproducibility, time, costs and scalability. These advantages allow for implementation in comprehensive research applications and downstream investigations.
小细胞外囊泡 (sEVs) 在癌症诊断、预后和治疗方面具有重要的应用前景,这归因于它们独特的货物反映了病理生理状态,积极参与细胞间通讯,以及它们在体液中的普遍性和稳定性。因此,sEV 研究领域呈指数级增长。然而,从含有血清的培养基中培养的细胞中分离 sEV 的方法缺乏标准化。大多数研究人员使用含有血清的培养基来收获 sEV,并采用超速离心作为主要的分离方法。超速离心效率低下,因为它没有能力在不污染非 sEV 材料或破坏 sEV 完整性的情况下分离高 sEV 产量。我们全面评估了一种使用切向流过滤和大小排阻色谱从各种人类和鼠癌细胞系(包括 HeLa、MDA-MB-231、EO771 和 B16F10)中分离 sEV 的方案。我们直接比较了传统超速离心和切向流过滤方法的性能,这些方法已经通过大小排阻色谱进一步纯化,以分离 sEV,并使用多种定量设备、蛋白质分析以及图像和纳米流式细胞术来严格表征 sEV 特性。超速离心和切向流过滤都富集了一致的 sEV 群体,颗粒的大小分布相似,范围高达 200nm。然而,切向流过滤在分离 sEV 方面的产量明显高于超速离心,因此更适合大规模研究应用。我们的结果表明,切向流过滤是一种可靠且强大的 sEV 分离方法,在产量、重现性、时间、成本和可扩展性方面优于超速离心。这些优势允许在综合研究应用和下游研究中实施。