Suppr超能文献

基于大规模功能化超表面的 SARS-CoV-2 检测和定量

Large-Scale Functionalized Metasurface-Based SARS-CoV-2 Detection and Quantification.

机构信息

Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, California 94304, United States.

3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, 4805-017, Portugal.

出版信息

ACS Nano. 2022 Oct 25;16(10):15946-15958. doi: 10.1021/acsnano.2c02500. Epub 2022 Sep 20.

Abstract

Plasmonic metasurfaces consist of metal-dielectric interfaces that are excitable at background and leakage resonant modes. The sharp and plasmonic excitation profile of metal-free electrons on metasurfaces at the nanoscale can be used for practical applications in diverse fields, including optoelectronics, energy harvesting, and biosensing. Currently, Fano resonant metasurface fabrication processes for biosensor applications are costly, need clean room access, and involve limited small-scale surface areas that are not easy for accurate sample placement. Here, we leverage the large-scale active area with uniform surface patterns present on optical disc-based metasurfaces as a cost-effective method to excite asymmetric plasmonic modes, enabling tunable optical Fano resonance interfacing with a microfluidic channel for multiple target detection in the visible wavelength range. We engineered plasmonic metasurfaces for biosensing through efficient layer-by-layer surface functionalization toward real-time measurement of target binding at the molecular scale. Further, we demonstrated the quantitative detection of antibodies, proteins, and the whole viral particles of SARS-CoV-2 with a high sensitivity and specificity, even distinguishing it from similar RNA viruses such as influenza and MERS. This cost-effective plasmonic metasurface platform offers a small-scale light-manipulation system, presenting considerable potential for fast, real-time detection of SARS-CoV-2 and pathogens in resource-limited settings.

摘要

等离子体超表面由可在背景和泄漏谐振模式下激发的金属-电介质界面组成。在纳米尺度上,超表面上无金属自由电子的尖锐和等离子体激发轮廓可用于包括光电、能量收集和生物传感在内的多个领域的实际应用。目前,用于生物传感器应用的 Fano 共振超表面制造工艺成本高,需要洁净室访问,并且涉及有限的小面积,不易进行准确的样品放置。在这里,我们利用光盘基超表面上存在的大尺寸、具有均匀表面图案的大面积作为一种具有成本效益的方法来激发非对称等离子体模式,从而实现可调谐的光学 Fano 共振与微流道的接口,用于在可见光范围内对多个目标进行检测。我们通过高效的逐层表面功能化设计了用于生物传感的等离子体超表面,以实现分子尺度上目标结合的实时测量。此外,我们通过定量检测抗体、蛋白质和 SARS-CoV-2 的整个病毒颗粒,证明了该超表面具有高灵敏度和特异性,甚至可以将其与流感和 MERS 等类似的 RNA 病毒区分开来。这种具有成本效益的等离子体超表面平台提供了一种小规模的光操控系统,在资源有限的环境中,具有快速、实时检测 SARS-CoV-2 和病原体的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验