Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA.
Division of Experimental Medicine, University of California, 1001 Potrero Avenue, San Francisco, CA, 94110, USA.
Adv Mater. 2020 May;32(19):e1907160. doi: 10.1002/adma.201907160. Epub 2020 Mar 23.
Metasurfaces are engineered nanostructured interfaces that extend the photonic behavior of natural materials, and they spur many breakthroughs in multiple fields, including quantum optics, optoelectronics, and biosensing. Recent advances in metasurface nanofabrication enable precise manipulation of light-matter interactions at subwavelength scales. However, current fabrication methods are costly and time-consuming and have a small active area with low reproducibility due to limitations in lithography, where sensing nanosized rare biotargets requires a wide active surface area for efficient binding and detection. Here, a plastic-templated tunable metasurface with a large active area and periodic metal-dielectric layers to excite plasmonic Fano resonance transitions providing multimodal and multiplex sensing of small biotargets, such as proteins and viruses, is introduced. The tunable Fano resonance feature of the metasurface is enabled via chemical etching steps to manage nanoperiodicity of the plastic template decorated with plasmonic layers and surrounding dielectric medium. This metasurface integrated with microfluidics further enhances the light-matter interactions over a wide sensing area, extending data collection from 3D to 4D by tracking real-time biomolecular binding events. Overall, this work resolves cost- and complexity-related large-scale fabrication challenges and improves multilayer sensitivity of detection in biosensing applications.
超构表面是一种经过工程设计的纳米结构界面,可以扩展天然材料的光子行为,在多个领域引发了许多突破,包括量子光学、光电学和生物传感。超构表面纳米制造的最新进展使得能够在亚波长尺度上精确控制光物质相互作用。然而,由于光刻的限制,当前的制造方法成本高、耗时且活性面积小,重复性低,其中,要感测纳米级的稀有生物靶标,需要一个大的活性表面来实现高效结合和检测。在这里,引入了一种具有大的活性面积和周期性金属-电介质层的塑料模板可调谐超构表面,以激发等离子体 Fano 共振跃迁,从而实现对小生物靶标(如蛋白质和病毒)的多模态和多路复用传感。通过化学刻蚀步骤来管理涂有等离子体层和周围介电介质的塑料模板的纳米周期性,从而实现超构表面可调谐的 Fano 共振特性。这种与微流控技术集成的超构表面进一步增强了宽传感区域的光物质相互作用,通过跟踪实时生物分子结合事件,将数据采集从 3D 扩展到 4D。总的来说,这项工作解决了与成本和复杂性相关的大规模制造挑战,并提高了生物传感应用中的多层检测灵敏度。