Abdul Samad Shafeek, Kumawat Nityanand, Venugopalan Priyamvada, Kumar Sunil
Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA.
Sci Rep. 2025 Jun 3;15(1):19380. doi: 10.1038/s41598-025-04353-1.
Plasmonic nanostructures enable tunable control of light emission, propagation, and confinement through engineered resonances. This study presents a comprehensive analysis of angular interrogation in one-dimensional (1D) metal-dielectric grating metasurfaces by systematically tuning opto-geometric parameters to tailor surface plasmon resonance (SPR) characteristics. We investigate the influence of large grating modulation depths (d > 100 nm) and a broad range of grating periods (300-2000 nm) on zeroth-order angular reflection over an angular span of 0° to 89°. Numerical predictions are validated through experimental characterization using commercial optical-disc gratings coated with a 50 nm gold film. We analyze the evolution of SPR band characteristics with grating period and depth, identifying the emergence of both broadband and narrowband angular resonances. Finite Element Method (FEM) simulations reveal reflection dip closures at grating periods of 925 nm and 1250 nm for excitation wavelengths of 633 nm and 850 nm, respectively. The optimized grating configurations yield high-contrast, narrow reflection dips with angular full-width-at-half-maximum (FWHM) < 1.5°, resulting in an order-of-magnitude improvement in the figure of merit (FOM). The originality and impact of this study lie in its systematic and extensive analysis of deep metal-dielectric grating metasurfaces to attain narrow bandwidths, effectively advancing beyond the conventional practice of using shallow modulation depths. Importantly, the results reveal a highly tolerant design space that supports narrowband responses in angular interrogation of 1D grating metasurfaces, enabling scalable, tunable, and high-resolution plasmonic device development across broader geometric and operational regimes than previously achieved.
等离子体纳米结构能够通过工程共振实现对光发射、传播和限制的可调控制。本研究通过系统地调整光学几何参数以定制表面等离子体共振(SPR)特性,对一维(1D)金属-电介质光栅超表面中的角度探测进行了全面分析。我们研究了大光栅调制深度(d>100nm)和宽范围的光栅周期(300-2000nm)对0°至89°角范围内零阶角反射的影响。通过使用涂覆有50nm金膜的商用光盘光栅进行实验表征,验证了数值预测。我们分析了SPR带特性随光栅周期和深度的演变,确定了宽带和窄带角共振的出现。有限元方法(FEM)模拟表明,对于633nm和850nm的激发波长,在925nm和1250nm的光栅周期处反射凹陷闭合。优化后的光栅配置产生了高对比度、窄反射凹陷,角半高宽(FWHM)<1.5°,导致品质因数(FOM)提高了一个数量级。本研究的创新性和影响力在于其对深金属-电介质光栅超表面进行了系统而广泛的分析,以获得窄带宽,有效地超越了使用浅调制深度的传统做法。重要的是,结果揭示了一个高度宽容的设计空间,支持一维光栅超表面角度探测中的窄带响应,从而能够在比以前更广泛的几何和操作范围内开发可扩展、可调谐和高分辨率的等离子体器件。