Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
Methods Mol Biol. 2022;2522:209-222. doi: 10.1007/978-1-0716-2445-6_13.
Genome-wide occupancy studies for RNA polymerases and their basal transcription factors deliver information about transcription dynamics and the recruitment of transcription elongation and termination factors in eukaryotes and prokaryotes. The primary method to determine genome-wide occupancies is chromatin immunoprecipitation combined with deep sequencing (ChIP-seq). Archaea possess a transcription machinery that is evolutionarily closer related to its eukaryotic counterpart but it operates in a prokaryotic cellular context. Studies on archaeal transcription brought insight into the evolution of transcription machineries and the universality of transcription mechanisms. Because of the limited resolution of ChIP-seq, the close spacing of promoters and transcription units found in archaeal genomes pose a challenge for ChIP-seq and the ensuing data analysis. The extreme growth temperature of many established archaeal model organisms necessitates further adaptations. This chapter describes a version of ChIP-seq adapted for the basal transcription machinery of thermophilic archaea and some modifications to the data analysis.
全基因组范围的 RNA 聚合酶及其基础转录因子的占有率研究提供了关于真核生物和原核生物转录动力学以及转录延伸和终止因子募集的信息。确定全基因组占有率的主要方法是染色质免疫沉淀结合深度测序(ChIP-seq)。古菌拥有一种转录机制,它在进化上与真核生物的对应物更为接近,但它在原核细胞环境中运作。古菌转录的研究深入了解了转录机制的进化和转录机制的普遍性。由于 ChIP-seq 的分辨率有限,古菌基因组中启动子和转录单位的紧密间隔对 ChIP-seq 及其后续数据分析构成了挑战。许多已建立的古菌模式生物的极端生长温度需要进一步的适应。本章描述了一种适用于嗜热古菌基础转录机制的 ChIP-seq 版本,以及对数据分析的一些修改。