Suppr超能文献

命名无名之物:基因组分类数据库中超过 65000 个未命名的和的名称。

Naming the unnamed: over 65,000 names for unnamed and in the Genome Taxonomy Database.

机构信息

Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK.

Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK.

出版信息

Int J Syst Evol Microbiol. 2022 Sep;72(9). doi: 10.1099/ijsem.0.005482.

Abstract

Thousands of new bacterial and archaeal species and higher-level taxa are discovered each year through the analysis of genomes and metagenomes. The Genome Taxonomy Database (GTDB) provides hierarchical sequence-based descriptions and classifications for new and as-yet-unnamed taxa. However, bacterial nomenclature, as currently configured, cannot keep up with the need for new well-formed names. Instead, microbiologists have been forced to use hard-to-remember alphanumeric placeholder labels. Here, we exploit an approach to the generation of well-formed arbitrary Latinate names at a scale sufficient to name tens of thousands of unnamed taxa within GTDB. These newly created names represent an important resource for the microbiology community, facilitating communication between bioinformaticians, microbiologists and taxonomists, while populating the emerging landscape of microbial taxonomic and functional discovery with accessible and memorable linguistic labels.

摘要

每年通过基因组和宏基因组分析都会发现数千种新的细菌和古细菌物种和更高层次的分类单元。基因组分类数据库(GTDB)为新的和尚未命名的分类单元提供基于序列的分层描述和分类。然而,目前的细菌命名法无法满足对新的、形式良好的名称的需求。相反,微生物学家被迫使用难以记住的字母数字占位符标签。在这里,我们利用一种在足够大的规模上生成形式良好的任意拉丁语名称的方法,为数以万计的 GTDB 中尚未命名的分类单元命名。这些新创建的名称代表了微生物学社区的一个重要资源,促进了生物信息学家、微生物学家和分类学家之间的交流,同时用可访问和易于记忆的语言标签填充了新兴的微生物分类和功能发现领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验