Suppr超能文献

瘤胃分离株 NK3A20 对底物和与产甲烷菌共培养具有代谢灵活性。

Rumen isolate NK3A20 exhibits metabolic flexibility in response to substrate and coculture with a methanogen.

机构信息

AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.

School of Veterinary Science, Massey University, Palmerston North, New Zealand.

出版信息

Appl Environ Microbiol. 2023 Oct 31;89(10):e0063423. doi: 10.1128/aem.00634-23. Epub 2023 Oct 6.

Abstract

Hydrogen (H) is the primary electron donor for methane formation in ruminants, but the H-producing organisms involved are largely uncharacterized. This work integrated studies of microbial physiology and genomics to characterize rumen bacterial isolate NK3A20 of the family . Isolate NK3A20 was the first recognized isolate of the NK3A20 group, which is among the ten most abundant bacterial genera in 16S rRNA gene surveys of rumen microbiota. NK3A20 produced acetate, butyrate, H, and formate from glucose. The end product ratios varied when grown with different substrates and at different H partial pressures. NK3A20 produced butyrate as a major product using glucose or under high H partial pressures and switched to mainly acetate in the presence of galacturonic acid (an oxidized sugar) or in coculture with a methanogen. Growth with galacturonic acid was faster at elevated H concentrations, while elevated H slowed growth with glucose. Genome analyses revealed the presence of multiple hydrogenases including a membrane-bound Ech hydrogenase, an electron bifurcating butyryl-CoA dehydrogenase (Bcd-Etf), and an Rnf complex that may be involved in modulating the observed metabolic pathway changes, providing insight into H formation in the rumen. IMPORTANCE The genus-level NK3A20 group is one of the ten most abundant genera of rumen bacteria. Like most of the rumen bacteria that produce the hydrogen that is converted to methane in the rumen, it is understudied, without any previously characterized isolates. We investigated isolate NK3A20, a cultured member of this genus, and showed that it modulates hydrogen production in response to its growth substrates and the hydrogen concentration in its environment. Low-hydrogen concentrations stimulated hydrogen formation, while high concentrations inhibited its formation and shifted the fermentation to more reduced organic acid products. We found that growth on uronic acids, components of certain plant polymers, resulted in low hydrogen yields compared to glucose, which could aid in the selection of low-methane feeds. A better understanding of the major genera that produce hydrogen in the rumen is part of developing strategies to mitigate biogenic methane emitted by livestock agriculture.

摘要

氢(H)是反刍动物甲烷形成的主要电子供体,但涉及的产氢生物在很大程度上尚未得到充分描述。这项工作综合了微生物生理学和基因组学的研究,以表征肠道细菌分离株 NK3A20 的家族。分离株 NK3A20 是 NK3A20 组的第一个公认的分离株,该组是瘤胃微生物群 16S rRNA 基因调查中最丰富的十个细菌属之一。NK3A20 从葡萄糖中产生乙酸盐、丁酸盐、H 和甲酸盐。当用不同的底物和不同的 H 分压生长时,终产物比会发生变化。当用葡萄糖或在高 H 分压下生长时,NK3A20 主要产生丁酸盐,而在用半乳糖醛酸(一种氧化糖)或与产甲烷菌共培养时,主要产生乙酸盐。在升高的 H 浓度下,用半乳糖醛酸生长更快,而升高的 H 会减缓用葡萄糖的生长。基因组分析显示存在多种氢化酶,包括膜结合 Ech 氢化酶、电子分叉丁酰辅酶 A 脱氢酶(Bcd-Etf)和可能参与调节观察到的代谢途径变化的 Rnf 复合物,为瘤胃中 H 的形成提供了深入的了解。重要性 NK3A20 属级群是瘤胃细菌中最丰富的十个属之一。像大多数在瘤胃中产生氢气的瘤胃细菌一样,它的研究还很有限,没有任何以前描述过的分离株。我们研究了该属的培养成员 NK3A20 分离株,并表明它会根据其生长底物和环境中的 H 浓度来调节氢气的产生。低 H 浓度刺激氢气的形成,而高浓度抑制其形成并将发酵转变为更还原的有机酸产物。我们发现,与葡萄糖相比,生长在糖醛酸上,即某些植物聚合物的成分上,会导致氢气产量降低,这可能有助于选择低甲烷饲料。更好地了解在瘤胃中产生氢气的主要属是制定减轻家畜农业产生的生物甲烷排放策略的一部分。

相似文献

引用本文的文献

本文引用的文献

3
Electron flow: key to mitigating ruminant methanogenesis.电子流:缓解反刍动物甲烷生成的关键。
Trends Microbiol. 2022 Mar;30(3):209-212. doi: 10.1016/j.tim.2021.12.005. Epub 2022 Jan 10.
9
The Controversial Role of Human Gut Lachnospiraceae.人类肠道毛螺菌科的争议性作用
Microorganisms. 2020 Apr 15;8(4):573. doi: 10.3390/microorganisms8040573.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验