Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.
Korean J Radiol. 2022 Nov;23(11):1078-1088. doi: 10.3348/kjr.2022.0299. Epub 2022 Sep 16.
To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC).
This retrospective study included 285 patients (mean age ± standard deviation, 62 ± 12 years; 220 male, 77.2%), including 215 for training (n = 161) and internal validation (n = 54) and 70 others for external validation, with newly developed contrast-enhancing lesions at the primary cancer site on the surveillance MRI following definitive treatment of HNSCC between January 2014 and October 2019. Of the 215 and 70 patients, 127 and 34, respectively, had local tumor recurrence. Radiomics models using radiomics scores were created separately for T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and ADC maps using non-zero coefficients from the least absolute shrinkage and selection operator in the training set. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of each radiomics score and known clinical parameter (age, sex, and clinical stage) in the internal and external validation sets.
Five radiomics features from T2WI, six from CE-T1WI, and nine from ADC maps were selected and used to develop the respective radiomics models. The area under ROC curve (AUROC) of ADC radiomics score was 0.76 (95% confidence interval [CI], 0.62-0.89) and 0.77 (95% CI, 0.65-0.88) in the internal and external validation sets, respectively. These were significantly higher than the AUROC values of T2WI (0.53 [95% CI, 0.40-0.67], = 0.006), CE-T1WI (0.53 [95% CI, 0.40-0.67], = 0.012), and clinical parameters (0.53 [95% CI, 0.39-0.67], = 0.021) in the external validation set.
The radiomics model using ADC maps exhibited higher diagnostic performance than those of the radiomics models using T2WI or CE-T1WI and clinical parameters in the diagnosis of local tumor recurrence in HNSCC following definitive treatment.
利用表观扩散系数(ADC)图的放射组学特征开发并验证一种模型,以诊断头颈部鳞状细胞癌(HNSCC)局部肿瘤复发。
本回顾性研究纳入了 285 例患者(平均年龄±标准差,62±12 岁;220 例男性,77.2%),包括用于训练(n=161)和内部验证(n=54)的 215 例患者,以及用于外部验证的 70 例患者,这些患者在 2014 年 1 月至 2019 年 10 月间接受 HNSCC 根治性治疗后,在监测 MRI 上于原发肿瘤部位出现新的增强病变。在 215 例和 70 例患者中,分别有 127 例和 34 例患者发生局部肿瘤复发。在训练集中使用最小绝对收缩和选择算子(least absolute shrinkage and selection operator)选择非零系数,分别为 T2 加权成像(T2WI)、对比增强 T1 加权成像(CE-T1WI)和 ADC 图创建放射组学模型。接收器工作特征(receiver operating characteristic,ROC)分析用于评估内部和外部验证集中每个放射组学评分和已知临床参数(年龄、性别和临床分期)的诊断性能。
从 T2WI 中选取了 5 个放射组学特征,从 CE-T1WI 中选取了 6 个,从 ADC 图中选取了 9 个,用于开发各自的放射组学模型。ADC 放射组学评分的 ROC 曲线下面积(area under the receiver operating characteristic curve,AUROC)在内部验证集和外部验证集中分别为 0.76(95%置信区间 [CI],0.62-0.89)和 0.77(95% CI,0.65-0.88)。这些显著高于 T2WI(0.53 [95% CI,0.40-0.67], = 0.006)、CE-T1WI(0.53 [95% CI,0.40-0.67], = 0.012)和临床参数(0.53 [95% CI,0.39-0.67], = 0.021)的 AUROC 值。
在根治性治疗后诊断 HNSCC 局部肿瘤复发时,与 T2WI 或 CE-T1WI 放射组学模型以及临床参数相比,基于 ADC 图的放射组学模型的诊断性能更高。