Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
Department of Radiology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China.
J Cancer Res Clin Oncol. 2024 Mar 16;150(3):132. doi: 10.1007/s00432-024-05642-4.
OBJECTIVES: To develop a radiomics model based on diffusion-weighted imaging (DWI) utilizing automated machine learning method to differentiate cerebral cystic metastases from brain abscesses. MATERIALS AND METHODS: A total of 186 patients with cerebral cystic metastases (n = 98) and brain abscesses (n = 88) from two clinical institutions were retrospectively included. The datasets (129 from institution A) were randomly portioned into separate 75% training and 25% internal testing sets. Radiomics features were extracted from DWI images using two subregions of the lesion (cystic core and solid wall). A thorough image preprocessing method was applied to DWI images to ensure the robustness of radiomics features before feature extraction. Then the Tree-based Pipeline Optimization Tool (TPOT) was utilized to search for the best optimized machine learning pipeline, using a fivefold cross-validation in the training set. The external test set (57 from institution B) was used to evaluate the model's performance. RESULTS: Seven distinct TPOT models were optimized to distinguish between cerebral cystic metastases and abscesses either based on different features combination or using wavelet transform. The optimal model demonstrated an AUC of 1.00, an accuracy of 0.97, sensitivity of 1.00, and specificity of 0.93 in the internal test set, based on the combination of cystic core and solid wall radiomics signature using wavelet transform. In the external test set, this model reached 1.00 AUC, 0.96 accuracy, 1.00 sensitivity, and 0.93 specificity. CONCLUSION: The DWI-based radiomics model established by TPOT exhibits a promising predictive capacity in distinguishing cerebral cystic metastases from abscesses.
目的:利用自动化机器学习方法,基于弥散加权成像(DWI)建立一种放射组学模型,以区分脑囊性转移瘤和脑脓肿。
材料和方法:回顾性纳入来自两个临床机构的 186 例脑囊性转移瘤(n=98)和脑脓肿(n=88)患者。数据集(来自机构 A 的 129 例)被随机分为 75%的训练集和 25%的内部测试集。使用病变的两个亚区(囊性核心和实性壁)从 DWI 图像中提取放射组学特征。在提取特征之前,对 DWI 图像应用了一种全面的图像预处理方法,以确保放射组学特征的稳健性。然后使用 Tree-based Pipeline Optimization Tool(TPOT)在训练集中进行五重交叉验证,以搜索最佳的优化机器学习管道。外部测试集(来自机构 B 的 57 例)用于评估模型的性能。
结果:优化了 7 种不同的 TPOT 模型,以区分脑囊性转移瘤和脓肿,其方法是基于不同的特征组合或使用小波变换。基于使用小波变换的囊性核心和实性壁放射组学特征的组合,在内部测试集中,最优模型的 AUC 为 1.00,准确性为 0.97,敏感性为 1.00,特异性为 0.93。在外部测试集中,该模型达到了 AUC 为 1.00,准确性为 0.96,敏感性为 1.00,特异性为 0.93。
结论:TPOT 建立的基于 DWI 的放射组学模型在区分脑囊性转移瘤和脓肿方面具有良好的预测能力。
Sichuan Da Xue Xue Bao Yi Xue Ban. 2021-7
Quant Imaging Med Surg. 2023-12-1
Asian J Neurosurg. 2025-2-6
Radiol Imaging Cancer. 2023-5
Lancet Digit Health. 2022-11
Phys Med Biol. 2022-7-22