文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于扩散加权成像的放射组学模型,采用自动机器学习方法,用于区分脑囊性转移瘤和脑脓肿。

Diffusion-weighted imaging-based radiomics model using automatic machine learning to differentiate cerebral cystic metastases from brain abscesses.

机构信息

Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.

Department of Radiology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China.

出版信息

J Cancer Res Clin Oncol. 2024 Mar 16;150(3):132. doi: 10.1007/s00432-024-05642-4.


DOI:10.1007/s00432-024-05642-4
PMID:38492096
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10944436/
Abstract

OBJECTIVES: To develop a radiomics model based on diffusion-weighted imaging (DWI) utilizing automated machine learning method to differentiate cerebral cystic metastases from brain abscesses. MATERIALS AND METHODS: A total of 186 patients with cerebral cystic metastases (n = 98) and brain abscesses (n = 88) from two clinical institutions were retrospectively included. The datasets (129 from institution A) were randomly portioned into separate 75% training and 25% internal testing sets. Radiomics features were extracted from DWI images using two subregions of the lesion (cystic core and solid wall). A thorough image preprocessing method was applied to DWI images to ensure the robustness of radiomics features before feature extraction. Then the Tree-based Pipeline Optimization Tool (TPOT) was utilized to search for the best optimized machine learning pipeline, using a fivefold cross-validation in the training set. The external test set (57 from institution B) was used to evaluate the model's performance. RESULTS: Seven distinct TPOT models were optimized to distinguish between cerebral cystic metastases and abscesses either based on different features combination or using wavelet transform. The optimal model demonstrated an AUC of 1.00, an accuracy of 0.97, sensitivity of 1.00, and specificity of 0.93 in the internal test set, based on the combination of cystic core and solid wall radiomics signature using wavelet transform. In the external test set, this model reached 1.00 AUC, 0.96 accuracy, 1.00 sensitivity, and 0.93 specificity. CONCLUSION: The DWI-based radiomics model established by TPOT exhibits a promising predictive capacity in distinguishing cerebral cystic metastases from abscesses.

摘要

目的:利用自动化机器学习方法,基于弥散加权成像(DWI)建立一种放射组学模型,以区分脑囊性转移瘤和脑脓肿。

材料和方法:回顾性纳入来自两个临床机构的 186 例脑囊性转移瘤(n=98)和脑脓肿(n=88)患者。数据集(来自机构 A 的 129 例)被随机分为 75%的训练集和 25%的内部测试集。使用病变的两个亚区(囊性核心和实性壁)从 DWI 图像中提取放射组学特征。在提取特征之前,对 DWI 图像应用了一种全面的图像预处理方法,以确保放射组学特征的稳健性。然后使用 Tree-based Pipeline Optimization Tool(TPOT)在训练集中进行五重交叉验证,以搜索最佳的优化机器学习管道。外部测试集(来自机构 B 的 57 例)用于评估模型的性能。

结果:优化了 7 种不同的 TPOT 模型,以区分脑囊性转移瘤和脓肿,其方法是基于不同的特征组合或使用小波变换。基于使用小波变换的囊性核心和实性壁放射组学特征的组合,在内部测试集中,最优模型的 AUC 为 1.00,准确性为 0.97,敏感性为 1.00,特异性为 0.93。在外部测试集中,该模型达到了 AUC 为 1.00,准确性为 0.96,敏感性为 1.00,特异性为 0.93。

结论:TPOT 建立的基于 DWI 的放射组学模型在区分脑囊性转移瘤和脓肿方面具有良好的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/579b2a966201/432_2024_5642_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/2b2a362ce989/432_2024_5642_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/948664f3a246/432_2024_5642_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/fbf676738ada/432_2024_5642_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/6523406e8858/432_2024_5642_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/59bf5ef02f26/432_2024_5642_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/72ca457c2677/432_2024_5642_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/579b2a966201/432_2024_5642_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/2b2a362ce989/432_2024_5642_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/948664f3a246/432_2024_5642_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/fbf676738ada/432_2024_5642_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/6523406e8858/432_2024_5642_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/59bf5ef02f26/432_2024_5642_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/72ca457c2677/432_2024_5642_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/11793608/579b2a966201/432_2024_5642_Fig7_HTML.jpg

相似文献

[1]
Diffusion-weighted imaging-based radiomics model using automatic machine learning to differentiate cerebral cystic metastases from brain abscesses.

J Cancer Res Clin Oncol. 2024-3-16

[2]
[Application of Automated Machine Learning Based on Radiomics Features of T2WI and RS-EPI DWI to Predict Preoperative T Staging of Rectal Cancer].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2021-7

[3]
A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC.

Invest Radiol. 2023-12-1

[4]
Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain.

Neuro Oncol. 2020-3-5

[5]
Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O -methylguanine-DNA methyltransferase promoter methylation in patients with gliomas.

J Magn Reson Imaging. 2021-7

[6]
[Value of radiomics models based on MRI diffusion weighted imaging and apparent diffusion coefficient in differentiating benign and malignant thyroid nodules].

Zhonghua Yi Xue Za Zhi. 2023-11-7

[7]
Can machine learning models improve early detection of brain metastases using diffusion weighted imaging-based radiomics?

Quant Imaging Med Surg. 2023-12-1

[8]
Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study.

BMC Med Imaging. 2023-3-29

[9]
An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and F-FDG PET Imaging Improves the Performance of Differentiating Glioblastoma From Solitary Brain Metastases.

Front Oncol. 2021-8-30

[10]
Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI.

Clin Imaging. 2002

引用本文的文献

[1]
Fusobacterium nucleatum as an Emerging Culprit in Brain Abscesses: A Narrative Synthesis of 25 Years of Clinical and Diagnostic Data.

Cureus. 2025-8-5

[2]
Brain Abscess Mimicking Brain Tumors: A Systematic Review of Individual Patient's Data.

Asian J Neurosurg. 2025-2-6

[3]
Virtual Reality for Preoperative Planning and Education in Pediatric Surgery: Preliminary Results for the Treatment of Congenital Malformations and Tumors.

World J Surg. 2025-6

[4]
Clinicodemographic and Radiological Features of Infective Ring-Enhancing Brain Lesions: A 4-Year Retrospective Study at a Tertiary Referral Center.

Open Forum Infect Dis. 2025-2-26

本文引用的文献

[1]
Single Cerebral Metastasis Mimicking Pyogenic Abscess in a Patient with Lung Adenocarcinoma.

Radiol Imaging Cancer. 2023-5

[2]
Predicting EGFR T790M Mutation in Brain Metastases Using Multisequence MRI-Based Radiomics Signature.

Acad Radiol. 2023-9

[3]
Radiomics in neuro-oncological clinical trials.

Lancet Digit Health. 2022-11

[4]
Radiomic study on preoperative multi-modal magnetic resonance images identifies IDH-mutant TERT promoter-mutant gliomas.

Cancer Med. 2023-2

[5]
Phantom Study on the Robustness of MR Radiomics Features: Comparing the Applicability of 3D Printed and Biological Phantoms.

Diagnostics (Basel). 2022-9-9

[6]
Development and Validation of a Model Using Radiomics Features from an Apparent Diffusion Coefficient Map to Diagnose Local Tumor Recurrence in Patients Treated for Head and Neck Squamous Cell Carcinoma.

Korean J Radiol. 2022-11

[7]
Clinical features and prognostic factors in adults with brain abscess.

Brain. 2023-4-19

[8]
Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma.

Cancers (Basel). 2022-6-30

[9]
Impact of image quality on radiomics applications.

Phys Med Biol. 2022-7-22

[10]
Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions.

Neuro Oncol. 2022-10-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索