Suppr超能文献

用于电化学氮还原反应(eNRR)的高效且选择性单原子催化剂设计的描述符和图形构建

Descriptors and graphical construction for design of efficient and selective single atom catalysts for the eNRR.

作者信息

Kapse Samadhan, Narasimhan Shobhana, Thapa Ranjit

机构信息

Department of Physics, SRM University - AP Amaravati 522 240 Andhra Pradesh India

Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560 064 Karnataka India

出版信息

Chem Sci. 2022 Aug 5;13(34):10003-10010. doi: 10.1039/d2sc02625b. eCollection 2022 Aug 31.

Abstract

The electrochemical nitrogen reduction reaction (eNRR) offers the possibility of ammonia synthesis under mild conditions; however, it suffers from low yields, a competing hydrogen evolution reaction pathway, and hydrogen poisoning. We present a systematic approach toward screening single atom catalysts (SACs) for the eNRR, by focusing on key parameters computed from density functional theory and relationships between them. We illustrate this by application to 66 model catalysts of the types, TM-Pc, TM-N C , and TM-N, where TM is a 3d transition metal or molybdenum. We identified the best SACs as Sc-Pc, Cr-N, Mn-Pc, and Fe-NC; these show eNRR selectivity over the HER and no hydrogen poisoning. The catalysts are identified through multi-parameter optimization which includes the condition of hydrogen poisoning. We propose a new electronic descriptor O, the valence electron occupancy of the metal center that exhibits a volcano-type relationship with eNRR overpotential. Our multi-parameter optimization approach can be mapped onto a simple graphical construction to find the best catalyst for the eNRR over the HER and hydrogen poisoning.

摘要

电化学氮还原反应(eNRR)为在温和条件下合成氨提供了可能性;然而,该反应存在产率低、存在竞争性析氢反应途径以及氢中毒等问题。我们提出了一种系统的方法来筛选用于eNRR的单原子催化剂(SAC),重点关注从密度泛函理论计算得到的关键参数及其相互关系。我们通过将其应用于66种TM-Pc、TM-N C 和TM-N类型的模型催化剂(其中TM为3d过渡金属或钼)来进行说明。我们确定最佳的SAC为Sc-Pc、Cr-N、Mn-Pc和Fe-NC;这些催化剂在析氢反应中表现出eNRR选择性且无氢中毒现象。通过包括氢中毒条件在内的多参数优化来确定这些催化剂。我们提出了一种新的电子描述符O,即金属中心的价电子占有率,它与eNRR过电位呈现出火山型关系。我们的多参数优化方法可以映射到一个简单的图形结构上,以找到在析氢反应和氢中毒方面对于eNRR而言的最佳催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验