Suppr超能文献

用于识别单原子催化剂电合成氨活性的电子描述符及BF作为电解质离子的影响

Electronic Descriptor to Identify the Activity of SACs for E-NRR and Effect of BF as Electrolyte Ion.

作者信息

Barman Narad, Kapse Samadhan, Thapa Ranjit

机构信息

Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India.

Centre of Computational and Integrative Science, SRM University AP, Amaravati, Andhra Pradesh, 522240, India.

出版信息

ChemSusChem. 2025 Jan 14;18(2):e202400902. doi: 10.1002/cssc.202400902. Epub 2024 Oct 18.

Abstract

Electrochemical nitrogen reduction reaction (e-NRR) is an eco-friendly alternative approach to generate ammonia under ambient conditions, with very low power supply. But, developing of an efficient catalyst by suppressing parallel hydrogen evolution reaction as well as avoiding the catalysts poisoning either by hydrogen or electrolyte ion is an open question. So, in order to screen the single atom catalysts (SACs) for the e-NRR, we proposed a descriptor-based approach using density functional theory (DFT) based calculations. We investigated total 24 different SACs of types TM-Pc, TM-NC, TM-NC, TM-NC and TM-N, considering transition metal (TM). We have considered mainly BF ion to understand the role of electrolyte and extended the study for four more electrolyte ions, Cl, ClO, SO, OH. Herein, to predict catalytic activity for a given catalyst we have tested 16 different electronic parameters. Out of those, electronic parameter d↓ occupancy, identified as electronic descriptor, is showing an excellent linear correlation with catalytic activity (R=0.86). Furthermore, the selectivity of e-NRR over HER is defined by using an energy parameter ▵G-▵G. Further, the electronic descriptor (d↓ occupancy) can be used to predict promising catalysts for e-NRR, thus reducing the efforts on designing future single atom catalysts (SACs).

摘要

电化学氮还原反应(e-NRR)是一种在环境条件下以极低电源生成氨的环保替代方法。但是,开发一种通过抑制平行析氢反应以及避免催化剂被氢气或电解质离子中毒的高效催化剂仍是一个悬而未决的问题。因此,为了筛选用于e-NRR的单原子催化剂(SAC),我们提出了一种基于描述符的方法,使用基于密度泛函理论(DFT)的计算。考虑到过渡金属(TM),我们总共研究了24种不同类型的SAC,即TM-Pc、TM-NC、TM-NC、TM-NC和TM-N。我们主要考虑了BF离子以了解电解质的作用,并将研究扩展到另外四种电解质离子,即Cl、ClO、SO、OH。在此,为了预测给定催化剂的催化活性,我们测试了16种不同的电子参数。其中,被确定为电子描述符的电子参数d↓占有率与催化活性呈现出极好的线性相关性(R = 0.86)。此外,e-NRR相对于HER的选择性通过能量参数△G - △G来定义。此外,电子描述符(d↓占有率)可用于预测有前景的e-NRR催化剂,从而减少未来设计单原子催化剂(SAC)的工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验