Medicine-Research Computing (C.A.G.), University of Virginia, Charlottesville.
Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville.
Hypertension. 2022 Nov;79(11):2552-2564. doi: 10.1161/HYPERTENSIONAHA.122.19557. Epub 2022 Sep 21.
Ion channel mutations in calcium regulating genes strongly associate with AngII (angiotensin II)-independent aldosterone production. Here, we used an established mouse model of in vivo aldosterone autonomy, -driven deletion of TWIK-related acid-sensitive potassium channels (TASK-1 and TASK-3, termed zona glomerulosa [zG]-TASK-loss-of-function), and selective pharmacological TASK channel inhibition to determine whether channel dysfunction in native, electrically excitable zG cell rosette-assemblies: (1) produces spontaneous calcium oscillatory activity and (2) is sufficient to drive substantial aldosterone autonomy.
We imaged calcium activity in adrenal slices expressing a zG-specific calcium reporter (GCaMP3), an in vitro experimental approach that preserves the native rosette assembly and removes potentially confounding extra-adrenal contributions. In parallel experiments, we measured acute aldosterone production from adrenal slice cultures.
Absent from untreated WT slices, we find that either adrenal-specific genetic deletion or acute pharmacological TASK channel inhibition produces spontaneous oscillatory bursting behavior and steroidogenic activity (2.4-fold) that are robust, sustained, and equivalent to activities evoked by 3 nM AngII in WT slices. Moreover, spontaneous activity in zG-TASK-loss-of-function slices and inhibitor-evoked activity in WT slices are unresponsive to AngII regulation over a wide range of concentrations (50 pM to 3 µM).
We provide proof of principle that spontaneous activity of zG cells within classic rosette assemblies evoked solely by a change in an intrinsic, dominant resting-state conductance can be a significant source of AngII-independent aldosterone production from native tissue.
钙调节基因中的离子通道突变与血管紧张素 II(AngII)无关的醛固酮产生密切相关。在这里,我们使用了一种已建立的体内醛固酮自主性小鼠模型,即 TWIK 相关酸敏感钾通道(TASK-1 和 TASK-3,称为肾小球带[TASK-1 和 TASK-3]功能丧失)的驱动缺失,以及选择性药理学 TASK 通道抑制,以确定在天然的、电兴奋的肾小球带细胞玫瑰花结集合体中:(1)是否产生自发的钙振荡活性,(2)是否足以驱动大量的醛固酮自主性。
我们在表达肾小球带特异性钙报告器(GCaMP3)的肾上腺切片中成像钙活性,这是一种保留天然玫瑰花结集合体并去除潜在混杂的肾上腺外贡献的体外实验方法。在平行实验中,我们测量了肾上腺切片培养物中急性醛固酮的产生。
在未处理的 WT 切片中不存在,我们发现,无论是肾上腺特异性基因缺失还是急性药理学 TASK 通道抑制,都会产生自发的振荡爆发行为和类固醇生成活性(WT 切片中 3 nM AngII 诱导的活性的 2.4 倍),这些活性是强大的、持续的,并且与 WT 切片中 3 nM AngII 诱导的活性相当。此外,在 zG-TASK 功能丧失切片中的自发活性和在 WT 切片中抑制剂诱导的活性对 AngII 调节无反应,浓度范围广泛(50 pM 至 3 µM)。
我们提供了一个原理证明,即在经典玫瑰花结集合体中,仅由内在的、优势的静息状态电导变化引起的 zG 细胞的自发活动,可以成为来自天然组织的 AngII 独立的醛固酮产生的重要来源。