Department of Infectious Diseases, Zhongshan Hospital, Fudan Universitygrid.8547.e, Shanghai, China.
Shanghai Public Health Clinical Center, Fudan Universitygrid.8547.e, Shanghai, China.
Microbiol Spectr. 2022 Oct 26;10(5):e0207222. doi: 10.1128/spectrum.02072-22. Epub 2022 Sep 21.
The emergence and spread of antibiotic resistance pose serious environmental and health challenges. Attention has been drawn to phage therapy as an alternative approach to combat antibiotic resistance with immense potential. However, one of the obstacles to phage therapy is phage resistance, and it can be acquired through genetic mutations, followed by consequences of phenotypic variations. Therefore, understanding the mechanisms underlying phage-host interactions will provide us with greater detail on how to optimize phage therapy. In this study, three lytic phages (phipa2, phipa4, and phipa10) were isolated to investigate phage resistance and the potential fitness trade-offs in Pseudomonas aeruginosa. Specifically, in phage-resistant mutants phipa2-R and phipa4-R, mutations in conferring resistance occurred in genes and both essential for type IV pili (T4P) biosynthesis. In the phage-resistant mutant phipa10-R, a large chromosomal deletion of ~294 kb, including the (homogentisate 1,2-dioxygenase) and (UTP-glucose-1-phosphate uridylyltransferase) genes, was observed and conferred phage phipa10 resistance. Further, we show examples of associated trade-offs in these phage-resistant mutations, e.g., impaired motility, reduced biofilm formation, and increased antibiotic susceptibility. Collectively, our study sheds light on resistance-mediated genetic mutations and their pleiotropic phenotypes, further emphasizing the impressive complexity and diversity of phage-host interactions and the challenges they pose when controlling bacterial diseases in this important pathogen. Battling phage resistance is one of the main challenges faced by phage therapy. To overcome this challenge, detailed information about the mechanisms of phage-host interactions is required to understand the bacterial evolutionary processes. In this study, we identified mutations in key steps of type IV pili (T4P) and O-antigen biosynthesis leading to phage resistance and provided new evidence on how phage predation contributed toward host phenotypes and fitness variations. Together, our results add further fundamental knowledge on phage-host interactions and how they regulate different aspects of Pseudomonas cell behaviors.
抗生素耐药性的出现和传播对环境和健康构成了严重挑战。噬菌体疗法作为一种对抗抗生素耐药性的替代方法,引起了广泛关注,具有巨大的潜力。然而,噬菌体疗法的一个障碍是噬菌体耐药性,它可以通过基因突变获得,随后会导致表型变异的后果。因此,了解噬菌体-宿主相互作用的机制将为我们提供更详细的信息,了解如何优化噬菌体疗法。在这项研究中,分离了三种裂解噬菌体(phipa2、phipa4 和 phipa10)来研究铜绿假单胞菌中的噬菌体耐药性和潜在的适应度权衡。具体来说,在噬菌体抗性突变体 phipa2-R 和 phipa4-R 中,发生在基因 和 上的突变均对四型菌毛(T4P)生物合成至关重要。在噬菌体抗性突变体 phipa10-R 中,观察到一个约 294kb 的大染色体缺失,包括 (间苯二酚 1,2-双加氧酶)和 (UTP-葡萄糖-1-磷酸尿苷酰转移酶)基因,并赋予噬菌体 phipa10 抗性。此外,我们还展示了这些噬菌体抗性突变相关的权衡实例,例如,运动能力受损、生物膜形成减少和抗生素敏感性增加。总的来说,我们的研究揭示了耐药性介导的基因突变及其多效表型,进一步强调了噬菌体-宿主相互作用的惊人复杂性和多样性,以及在控制这种重要病原体的细菌疾病时所面临的挑战。 应对噬菌体耐药性是噬菌体疗法面临的主要挑战之一。为了克服这一挑战,需要详细了解噬菌体-宿主相互作用的机制,以了解细菌的进化过程。在这项研究中,我们确定了导致噬菌体抗性的四型菌毛(T4P)和 O-抗原生物合成关键步骤中的突变,并提供了新的证据,说明噬菌体捕食如何导致宿主表型和适应性变化。总之,我们的研究结果为噬菌体-宿主相互作用以及它们如何调节铜绿假单胞菌细胞行为的不同方面提供了进一步的基础知识。