Suppr超能文献

了解 AP-1 中噬菌体 BX-1 的抗性及群体感应调控的作用。

Understanding phage BX-1 resistance in AP-1 and the role of quorum-sensing regulation.

作者信息

Li Xiaoyu, Liu Xin, Ma Tianyi, Su Haochen, Sui Bingrui, Wang Lili, Murtaza Bilal, Xu Yongping, Li Na, Tan Demeng

机构信息

MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.

Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Microbiol Spectr. 2025 Feb 4;13(2):e0243524. doi: 10.1128/spectrum.02435-24. Epub 2025 Jan 14.

Abstract

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential. In this study, we isolated a novel phage, BX-1, capable of infecting AP-1, and characterized its resistant mutants. We elucidated the essential role of the bacterial cellulose biosynthesis-related gene , which functions as a cyclic di-GMP-binding protein, in influencing host susceptibility to phage BX-1. Interestingly, Congo Red, Calcofluor White staining, and cellulose content assays indicated that deletion of in strain AP-1 does not completely abolish cellulose production, suggesting that is not essential for bacterial cellulose synthesis. Furthermore, investigating the signaling molecules that regulate phage-host interactions, we find that in a high cell density state (Δ), bacterial cells upregulate their susceptibility to phage BX-1, which leads to a rapid development of resistance. Conversely, cells in a low-density state (Δ) exhibit reduced susceptibility to phage BX-1 while still producing comparable phage progenies. This population density-dependent response is primarily enhanced by the predicted quorum-sensing autoinducer CAI-1, synthesized by the gene . Collectively, our findings reveal the intricate dynamics of phage-host interactions, adding a new layer of complexity to our understanding of phage receptor regulations.IMPORTANCEPhage therapy has garnered significant attention as a promising solution to antibiotic resistance in aquaculture. However, its application is hindered by a limited understanding of the genotypic and phenotypic dynamics governing phage-host interactions. Bacteria have developed various defense mechanisms against phages, such as mutations in phage receptors. In this study, we demonstrate that the bacterial cellulose biosynthesis-related gene plays a crucial role in determining susceptibility to phage BX-1, while quorum-sensing (QS) systems significantly influence collective phage-related behaviors. By characterizing the mechanisms of phage resistance and the regulatory role of QS in susceptibility, our findings enhance the understanding of phage-host interactions and pave the way for more effective phage therapy applications. Collectively, these insights illuminate the evolutionary complexities of phage-defense systems and the broader strategies that bacteria employ to coexist with phages.

摘要

海洋生态系统的特点是细菌宿主及其噬菌体具有丰富的多样性。噬菌体的繁殖主要受其吸附宿主细胞能力的限制,并受到各种细菌防御机制的进一步挑战。为了充分实现噬菌体疗法在水产养殖中的潜力,全面了解噬菌体 - 宿主相互作用及其调控至关重要。在本研究中,我们分离出一种能够感染AP - 1的新型噬菌体BX - 1,并对其抗性突变体进行了表征。我们阐明了细菌纤维素生物合成相关基因(其作为一种环二鸟苷酸结合蛋白发挥作用)在影响宿主对噬菌体BX - 1的敏感性方面的重要作用。有趣的是,刚果红、荧光增白剂染色和纤维素含量测定表明,AP - 1菌株中该基因的缺失并未完全消除纤维素的产生,这表明该基因对于细菌纤维素合成并非必不可少。此外,在研究调节噬菌体 - 宿主相互作用的信号分子时,我们发现处于高细胞密度状态(Δ)的细菌细胞会上调其对噬菌体BX - 1的敏感性,这导致抗性的快速发展。相反,处于低密度状态(Δ)的细胞对噬菌体BX - 1的敏感性降低,同时仍能产生相当数量的噬菌体后代。这种群体密度依赖性反应主要由基因合成的预测群体感应自诱导物CAI - 1增强。总体而言,我们的研究结果揭示了噬菌体 - 宿主相互作用的复杂动态,为我们对噬菌体受体调控的理解增添了新的复杂性。

重要性

噬菌体疗法作为解决水产养殖中抗生素耐药性的一种有前景的方法已引起广泛关注。然而,其应用受到对控制噬菌体 - 宿主相互作用的基因型和表型动态理解有限的阻碍。细菌已经进化出各种针对噬菌体的防御机制,例如噬菌体受体的突变。在本研究中,我们证明细菌纤维素生物合成相关基因在决定对噬菌体BX - 1的敏感性方面起着关键作用,而群体感应(QS)系统显著影响与噬菌体相关的集体行为。通过表征噬菌体抗性机制和QS在敏感性中的调节作用,我们的研究结果增进了对噬菌体 - 宿主相互作用的理解,并为更有效的噬菌体疗法应用铺平了道路。总体而言,这些见解揭示了噬菌体防御系统的进化复杂性以及细菌与噬菌体共存所采用的更广泛策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cfb/11792527/58a9acffcda6/spectrum.02435-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验