Suppr超能文献

氧化葡萄糖酸杆菌对超镁铁矿物的生物加速风化作用

Bio-accelerated weathering of ultramafic minerals with Gluconobacter oxydans.

作者信息

Lee Joseph J, Plante Luke, Pian Brooke, Marecos Sabrina, Medin Sean A, Klug Jacob D, Reid Matthew C, Gadikota Greeshma, Gazel Esteban, Barstow Buz

机构信息

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.

REEgen, Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Sci Rep. 2025 Apr 30;15(1):15134. doi: 10.1038/s41598-025-99655-9.

Abstract

Ultramafic rocks are an abundant source of cations for CO mineralization (e.g., Mg) and elements for sustainability technologies (e.g., Ni, Cr, Mn, Co, Al). However, there is no industrially useful process for dissolving ultramafic materials to release cations for CO sequestration or mining them for energy-critical elements. Weathering of ultramafic rocks by rainwater, release of metal cations, and subsequent CO mineralization already naturally sequesters CO from the atmosphere, but this natural process will take thousands to hundreds of thousands of years to remove excess anthropogenic CO, far too late to deal with global warming that will happen over the next century. Mechanical acceleration of weathering by grinding can accelerate cation release but is prohibitively expensive. In this article we show that gluconic acid-based lixiviants produced by the mineral-dissolving microbe Gluconobacter oxydans accelerate leaching of Mg by 20× over deionized water, and that leaching of Mg, Mn, Fe, Co, and Ni further improves by 73% from 24 to 96 h. At low pulp density (1%) the G. oxydans biolixiviant is only 6% more effective than gluconic acid. But, at 60% pulp density the G. oxydans biolixiviant is 3.2× more effective than just gluconic acid. We demonstrate that biolixiviants made with cellulosic hydrolysate are not significantly worse than biolixiviants made with glucose, dramatically improving the feedstock available for bioleaching. Finally, we demonstrate that we can reduce the number of carbon atoms in the biolixiviant feedstock (e.g., glucose or cellulosic hydrolysate) needed to release one Mg ion and mineralize one atom of carbon from CO from 525 to 1.

摘要

超镁铁质岩石是二氧化碳矿化所需阳离子(如镁)以及可持续技术所需元素(如镍、铬、锰、钴、铝)的丰富来源。然而,目前尚无工业上可行的方法来溶解超镁铁质材料以释放用于二氧化碳封存的阳离子,或开采其中的能源关键元素。雨水对超镁铁质岩石的风化作用、金属阳离子的释放以及随后的二氧化碳矿化过程,已经自然地从大气中封存了二氧化碳,但这个自然过程需要数千到数十万年才能去除过量的人为二氧化碳,对于应对下个世纪即将发生的全球变暖来说为时已晚。通过研磨机械加速风化可以加快阳离子释放,但成本过高。在本文中,我们表明由氧化葡萄糖杆菌这种矿物溶解微生物产生的基于葡萄糖酸的浸出剂,使镁的浸出速度比去离子水快20倍,并且从24小时到96小时,镁、锰、铁、钴和镍的浸出率进一步提高了73%。在低矿浆密度(1%)下,氧化葡萄糖杆菌生物浸出剂的效果仅比葡萄糖酸高6%。但是,在矿浆密度为60%时,氧化葡萄糖杆菌生物浸出剂的效果比单纯的葡萄糖酸高3.2倍。我们证明,用纤维素水解产物制成的生物浸出剂并不比用葡萄糖制成的生物浸出剂差很多,这显著改善了可用于生物浸出的原料。最后,我们证明,我们可以将释放一个镁离子并使一个二氧化碳中的碳原子矿化所需的生物浸出剂原料(如葡萄糖或纤维素水解产物)中的碳原子数从525个减少到1个。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/936e/12043915/d260893e7349/41598_2025_99655_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验