State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
Environ Sci Technol. 2022 Oct 4;56(19):14059-14068. doi: 10.1021/acs.est.2c04557. Epub 2022 Sep 21.
In the past decades, extensive efforts have been devoted to the mechanistic understanding of various heterogeneous Fenton reactions. Nevertheless, controversy still remains on the oxidation mechanism/pathway toward different organic compounds in the classical iron oxide-based Fenton reaction, largely because the role of the interaction between the organic compounds and the catalyst has been scarcely considered. Here, we revisited the classic heterogeneous ferrihydrite (Fhy)/HO system toward different organic compounds on the basis of a series of degradation experiments, alcohol quenching experiments, theoretical modeling, and intermediate analysis. The Fhy/HO system exhibited highly selective oxidation toward the group of compounds that bear carboxyl groups, which tend to complex with the surface ≡Fe(III) sites of the Fhy catalyst. Such interaction results in a nonradical inner sphere electron transfer process, which seizes one electron from the target compound and features negligible inhibition by the radical quencher. In contrast, for the oxidation of organic compounds that could not complex with the catalyst, the traditional HO process makes the main contribution, which proceeds via hydroxyl addition reaction and could be readily suppressed by the radical quencher. This study implies that the interaction between the organic compounds and the catalyst plays a decisive role in the oxidation pathway and mechanism of the target compounds and provides a holistic understanding on the iron oxide-based heterogeneous Fenton system.
在过去的几十年中,人们为深入了解各种非均相芬顿反应做出了广泛的努力。然而,在经典的氧化铁基芬顿反应中,对于不同有机化合物的氧化机制/途径仍存在争议,主要是因为很少考虑有机化合物与催化剂之间的相互作用的作用。在这里,我们在一系列降解实验、醇猝灭实验、理论建模和中间产物分析的基础上,重新研究了不同有机化合物在经典的非均相水铁矿(Fhy)/HO 体系中的反应。Fhy/HO 体系对含有羧基的化合物表现出高度的选择性氧化,这些化合物往往与 Fhy 催化剂表面的≡Fe(III)位点发生络合。这种相互作用导致了非自由基的内球电子转移过程,该过程从目标化合物中夺取一个电子,并且受自由基猝灭剂的抑制作用可忽略不计。相比之下,对于不能与催化剂络合的有机化合物的氧化,传统的 HO 过程起主要作用,其通过羟基加成反应进行,并且容易受到自由基猝灭剂的抑制。本研究表明,有机化合物与催化剂之间的相互作用对目标化合物的氧化途径和机制起着决定性的作用,并为氧化铁基非均相芬顿体系提供了全面的认识。