Suppr超能文献

在离子淌度质谱中,对苯二酚去质子化过程中气相分子氧的加成证据。

Evidence of Gas-Phase Attachment of Molecular Oxygen to Deprotonated Hydroquinone During Ion-Mobility Mass Spectrometry.

机构信息

Center for Mass Spectrometry, Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States.

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

出版信息

J Am Soc Mass Spectrom. 2022 Oct 5;33(10):1816-1824. doi: 10.1021/jasms.1c00222. Epub 2022 Sep 21.

Abstract

Gas-phase addition of dioxygen to certain ions is a well-known phenomenon in mass spectrometry. For this reaction to occur, the presence of a distonic radical site on the precursor ion is thought to be a prerequisite. Herein, we report that oxygen adduct formation can take place also with deprotonated hydroquinone, which in fact is an even-electron species without a radical site. When the product-ion spectrum of the / 109 ion, generated by electrospray ionization from a solution of hydroquinone in acetonitrile, was recorded under ion-mobility conditions, a new peak was observed at / 141. However, an analogous peak was not visible in the spectrum acquired under nonmobility conditions (i.e., without any gas introduced to the mobility cell). Presumably, traces of oxygen present in the collision gas instigate an ion-molecule reaction to produce an adduct of / 141, which upon activation results in CO and HO loss to form a product ion of / 95. Isotope-labeling studies confirmed that one of the hydrogen atoms from the hydroxy group and another from the aromatic ring contribute to the water loss instigated from the / 141 adduct. Furthermore, computational methods indicated the three-dimensional structure of the ground-state deprotonated hydroquinone to be distinctly different from those of its 1,2- and 1,3-isomers. Calculations predicted that all atoms in the two / 109 ions generated from catechol and resorcinol lie on one plane. In contrast, the structure of the / 109 ion from hydroquinone was significantly different. Computations predicted that the hydrogen atom on the intact hydroxyl group of deprotonated hydroquinone protrudes out of plane from rest of the atoms. Consequently, the exposed OH group can interact with an incoming dioxygen molecule. Computations conducted at the CAM-B3LYP/6-311++g(2d,2p) level of theory detected a minimum energy crossing point (MECP) at -4.3 kJ mol below the separated O + deprotonated hydroquinone triplet threshold. In contrast, similar calculations conducted for catechol and resorcinol yielded MECPs of +116.9 and +69.1 kJ mol, respectively, above the associated triplet thresholds. These results indicated that the curve crossing required to form singlet products upon reaction with triplet O is favorable in the case of hydroquinone and unfavorable in the cases of catechol and resorcinol. In practical terms, the selective oxygen addition appears to be a diagnostically useful reaction to differentiate hydroquinone from its ring isomers.

摘要

气相中二氧(O₂)与某些离子的加成是质谱中众所周知的现象。为了使这种反应发生,认为前体离子上存在离域自由基位点是先决条件。在此,我们报告说,去质子化对苯二酚也可以形成氧加合物,实际上它是一种没有自由基位点的偶数电子物种。当通过电喷雾电离从乙腈中的对苯二酚溶液生成/ 109 离子的产物离子谱在离子迁移条件下记录时,在/ 141 处观察到一个新峰。然而,在非迁移条件(即没有引入任何气体到迁移室)下获得的光谱中,没有可见到类似的峰。推测碰撞气体中存在的痕量氧气引发离子-分子反应,生成/ 141 的加合物,该加合物在活化后导致 CO 和 HO 的损失,从而形成/ 95 的产物离子。同位素标记研究证实,来自羟基的一个氢原子和来自芳环的另一个氢原子有助于从/ 141 加合物引发的水损失。此外,计算方法表明,ground-state deprotonated hydroquinone 的三维结构明显不同于其 1,2-和 1,3-异构体。计算预测,来自邻苯二酚和间苯二酚的两个/ 109 离子生成的所有原子都位于一个平面上。相比之下,来自对苯二酚的/ 109 离子的结构则大不相同。计算预测,去质子化对苯二酚中完整羟基上的氢原子从其余原子突出到平面之外。因此,暴露的 OH 基团可以与进入的二氧分子相互作用。在 CAM-B3LYP/6-311++g(2d,2p)理论水平上进行的计算检测到在与三重态 O 分离的去质子化对苯二酚三重态阈值以下-4.3 kJ mol 的最小能量交叉点(MECP)。相比之下,对于邻苯二酚和间苯二酚,分别进行类似的计算得到的 MECP 分别为+116.9 和+69.1 kJ mol,高于相关三重态阈值。这些结果表明,在与三重态 O 反应形成单重态产物所需的曲线交叉在对苯二酚的情况下是有利的,而在邻苯二酚和间苯二酚的情况下则是不利的。实际上,选择性氧加成似乎是一种有用的诊断反应,可以将对苯二酚与其环异构体区分开来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验