Man Zengming, Li Peng, Zhou Dong, Wang Yizhou, Liang Xiaohui, Zang Rui, Li Pengxin, Zuo Yuqi, Lam Yeng Ming, Wang Guoxiu
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
Nano Lett. 2020 May 13;20(5):3769-3777. doi: 10.1021/acs.nanolett.0c00789. Epub 2020 Apr 10.
Cost-effective material with a rational design is significant for both sodium-ion batteries (SIBs) and electromagnetic wave (EMW) absorption. Herein, we report an elaborate yolk-shell FeS@C nanocomposite as a promising material for application in both SIBs and EMW absorption. When applied as an anode material in SIBs, the yolk-shell structure not only facilitates a fast electron transport and shortens Na ion diffusion paths but also eases the huge volume change of FeS during repeated discharge/charge processes. The as-developed FeS@C exhibits a high specific capacity of 616 mA h g after 100 cycles at 0.1 A g with excellent rate performance. Furthermore, owing to the significant cavity and interfacial effects enabled by yolk-shell structuring, the FeS@C nanocomposite delivers excellent EMW absorption properties with a strong reflection loss (-45 dB with 1.45 mm matching thickness) and a broad 15.4 GHz bandwidth. This work inspires the development of high-performance bifunctional materials.
具有合理设计的高性价比材料对于钠离子电池(SIBs)和电磁波(EMW)吸收都具有重要意义。在此,我们报道了一种精心设计的蛋黄壳结构FeS@C纳米复合材料,它有望应用于SIBs和EMW吸收。当用作SIBs的负极材料时,蛋黄壳结构不仅有助于快速的电子传输并缩短钠离子扩散路径,还能缓解FeS在反复充放电过程中的巨大体积变化。所制备的FeS@C在0.1 A g下循环100次后表现出616 mA h g的高比容量以及优异的倍率性能。此外,由于蛋黄壳结构产生的显著空腔和界面效应,FeS@C纳米复合材料具有优异的EMW吸收性能,具有强烈的反射损耗(在匹配厚度为1.45 mm时为-45 dB)和15.4 GHz的宽带宽。这项工作为高性能双功能材料的开发提供了启示。