Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , G. Narutowicza 11/12, 80-233 Gdansk, Poland.
NanoBioMedical Centre, Adam Mickiewicz University , Umultowska 85, 61-614 Poznan, Poland.
Langmuir. 2017 Oct 3;33(39):10351-10365. doi: 10.1021/acs.langmuir.7b02743. Epub 2017 Sep 22.
It has been long known that the physical encapsulation of oleic acid-capped iron oxide nanoparticles (OA-IONPs) with the cetyltrimethylammonium (CTA) surfactant induces the formation of spherical iron oxide nanoparticle clusters (IONPCs). However, the behavior and functional properties of IONPCs in chemical reactions have been largely neglected and are still not well-understood. Herein, we report an unconventional ligand-exchange function of IONPCs activated when dispersed in an ethyl acetate/acetate buffer system. The ligand exchange can successfully transform hydrophobic OA-IONP building blocks of IONPCs into highly hydrophilic, acetate-capped iron oxide nanoparticles (Ac-IONPs). More importantly, we demonstrate that the addition of silica precursors (tetraethyl orthosilicate and 3-aminopropyltriethoxysilane) to the acetate/oleate ligand-exchange reaction of the IONPs induces the disassembly of the IONPCs into monodispersed iron oxide-acetate-silica core-shell-shell (IONPs@acetate@SiO) nanoparticles. Our observations evidence that the formation of IONPs@acetate@SiO nanoparticles is initiated by a unique micellar fusion mechanism between the Pickering-type emulsions of IONPCs and nanoemulsions of silica precursors formed under ethyl acetate buffered conditions. A dynamic rearrangement of the CTA-oleate bilayer on the IONPC surfaces is proposed to be responsible for the templating process of the silica shells around the individual IONPs. In comparison to previously reported methods in the literature, our work provides a much more detailed experimental evidence of the silica-coating mechanism in a nanoemulsion system. Overall, ethyl acetate is proven to be a very efficient agent for an effortless preparation of monodispersed IONPs@acetate@SiO and hydrophilic Ac-IONPs from IONPCs.
长期以来,人们一直知道,用十六烷基三甲基溴化铵(CTA)表面活性剂将油酸封端的氧化铁纳米粒子(OA-IONPs)物理包裹会诱导形成球形氧化铁纳米粒子簇(IONPCs)。然而,IONPCs 在化学反应中的行为和功能特性在很大程度上被忽视了,并且仍然没有得到很好的理解。在这里,我们报告了 IONPCs 在分散在乙酸乙酯/乙酸缓冲系统中时的一种非常规配体交换功能。配体交换可以成功地将 IONPCs 的疏水 OA-IONP 构建块转化为高亲水性的、乙酸封端的氧化铁纳米粒子(Ac-IONPs)。更重要的是,我们证明了向乙酸/油酸盐配体交换反应中添加硅烷前体(正硅酸乙酯和 3-氨丙基三乙氧基硅烷)会导致 IONPCs 解组装成单分散的氧化铁-乙酸-二氧化硅核壳壳(IONPs@acetate@SiO)纳米粒子。我们的观察结果表明,IONPs@acetate@SiO 纳米粒子的形成是由 IONPCs 的 Pickering 型乳液和在乙酸乙酯缓冲条件下形成的硅烷前体的纳米乳液之间的独特胶束融合机制引发的。我们提出,IONPC 表面的 CTA-油酸盐双层的动态重排负责在单个 IONPs 周围形成二氧化硅壳的模板过程。与文献中以前报道的方法相比,我们的工作提供了更详细的实验证据,证明了纳米乳液体系中二氧化硅涂层的机制。总的来说,乙酸乙酯被证明是一种非常有效的试剂,可以从 IONPCs 轻松制备单分散的 IONPs@acetate@SiO 和亲水性 Ac-IONPs。