V S Haritha, Balan Maya, Hosson J Th M De, Krishnan Gopi
Department of Physics, University of Kerala Kariayavattom Thiruvananthapuram 695581 India.
Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kochi Kerala 682041 India.
Nanoscale Adv. 2020 Aug 6;2(9):4251-4260. doi: 10.1039/d0na00467g. eCollection 2020 Sep 16.
Metal nanostructures have attracted much attention in biomedical, plasmonic, hydrogen storage, and high-energy battery applications. However, the synthesis of various nanostructures of highly reactive elements ( Mg) is still a difficult task and no single-approach has been reported for synthesizing such nanostructures. In this work, we produced magnesium nanoparticles (NPs), nanowires (NWs) and nanoneedles (NNs) in a single-approach, based on thermal evaporation without any carrier gas. Importantly, we employed rapid heating and cooling a rapid thermal processing (RTP) furnace to control the nucleation and growth of nanostructures. The testing of Zn and Mg-Zn nanostructures was done to validate our approach and design for other metals and bimetallics. Interestingly, Cu and Ag nanoparticles were produced from metal salts (metal acetates and nitrates) with a reasonable control. The tuning of various nanostructures was possible by interplaying (i) with the curvature/outer diameter of the quartz bottle used for evaporation and (ii) by varying the position of the substrates. More specifically, the curvature of the quartz bottle increased the vapour collisions and effectively reduced the thermal energy of the vapour. Altogether, this favoured the control and confinement of vapour onto substrates and achieved supersaturation. Simultaneously, it led to the formation of various nanostructures without any carrier gas. The presented experimental set up is a versatile, simple, single-step and cost-effective solution for producing high-quality nanostructures.
金属纳米结构在生物医学、等离子体、储氢和高能电池应用中备受关注。然而,高反应性元素(镁)的各种纳米结构的合成仍然是一项艰巨的任务,目前尚未报道有单一方法可用于合成此类纳米结构。在这项工作中,我们基于无任何载气的热蒸发,通过单一方法制备了镁纳米颗粒(NPs)、纳米线(NWs)和纳米针(NNs)。重要的是,我们采用快速加热和冷却——一种快速热处理(RTP)炉来控制纳米结构的成核和生长。对锌和镁锌纳米结构进行了测试,以验证我们对其他金属和双金属的方法和设计。有趣的是,通过合理控制,从金属盐(金属醋酸盐和硝酸盐)中制备出了铜和银纳米颗粒。通过(i)与用于蒸发的石英瓶的曲率/外径相互作用以及(ii)改变衬底的位置,可以实现对各种纳米结构的调控。更具体地说,石英瓶的曲率增加了蒸汽碰撞,并有效降低了蒸汽的热能。总之,这有利于将蒸汽控制和限制在衬底上并实现过饱和。同时,它导致在无任何载气的情况下形成各种纳米结构。所展示的实验装置是一种用于生产高质量纳米结构的通用、简单、单步且具有成本效益的解决方案。