Suppr超能文献

泰国嗜酸性粒细胞性脑膜炎的全国监测。

A national surveillance of eosinophilic meningitis in Thailand.

作者信息

Aekphachaisawat Noppadol, Sawanyawisuth Kittisak, Khamsai Sittichai, Boonsawat Watchara, Tiamkao Somsak, Limpawattana Panita, Maleewong Wanchai, Ngamjarus Chetta

机构信息

Central Library, Silpakorn University, Bangkok, Thailand.

Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.

出版信息

Parasite Epidemiol Control. 2022 Sep 8;19:e00272. doi: 10.1016/j.parepi.2022.e00272. eCollection 2022 Nov.

Abstract

INTRODUCTION

Eosinophilic meningitis (EOM) is an emerging infectious disease worldwide. The most common cause of EOM is infection with One possible method of monitoring and control of this infection is surveillance and prediction. There are limited data on national surveillance and predictive models on EOM. This study aimed to develop an online surveillance with a predictive model for EOM by using the national database.

METHODS

We retrospectively retrieved reported cases of EOM from all provinces in Thailand and quantified them by month and year. Data were retrieved from Ministry of Public Health database. We developed a website application to explore the EOM cases in Thailand including regions and provinces using box plots. The website also provided the Autoregressive Integrated Moving Average (ARIMA) models and Seasonal ARIMA (SARIMA) models for predicting the disease cases from nation, region, and province levels. The suitable models were considered by minimum Akaike Information Criterion (AIC). The appropriate SARIMA model was used to predict the number of EOM cases.

RESULTS

From 2003 to 2021, 3330 EOM cases were diagnosed and registered in the national database, with a peak in 2003 (median of 22 cases). We determined SARIMA(1,1,2)(2,0,0)[12] to be the most appropriate model, as it yielded the fitted values that were closest to the actual data. A predictive surveillance website was published on http://202.28.75.8/sample-apps/NationalEOM/.

CONCLUSIONS

We determined that web application can be used for monitoring and exploring the trend of EOM patients in Thailand. The predictive values matched the actual monthly numbers of EOM cases indicating a good fit of the predictive model.

摘要

引言

嗜酸性粒细胞性脑膜炎(EOM)是一种在全球范围内新出现的传染病。EOM最常见的病因是感染。监测和控制这种感染的一种可能方法是监测和预测。关于EOM的国家监测和预测模型的数据有限。本研究旨在利用国家数据库开发一个具有EOM预测模型的在线监测系统。

方法

我们回顾性地检索了泰国所有省份报告的EOM病例,并按月份和年份进行量化。数据从公共卫生部数据库中检索。我们开发了一个网站应用程序,使用箱线图来探索泰国包括各地区和省份的EOM病例。该网站还提供自回归积分滑动平均(ARIMA)模型和季节性ARIMA(SARIMA)模型,用于预测国家、地区和省份层面的疾病病例数。通过最小赤池信息准则(AIC)来考虑合适的模型。使用合适的SARIMA模型来预测EOM病例数。

结果

2003年至2021年,国家数据库中诊断并登记了3330例EOM病例,2003年出现峰值(中位数为22例)。我们确定SARIMA(1,1,2)(2,0,0)[12]是最合适的模型,因为它产生的拟合值最接近实际数据。一个预测性监测网站已发布在http://202.28.75.8/sample-apps/NationalEOM/

结论

我们确定网络应用程序可用于监测和探索泰国EOM患者的趋势。预测值与EOM病例的实际月度数量相符,表明预测模型拟合良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86df/9483718/f3e913d44e05/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验