Cao Ye, Wong Yee Shan, Ben Mabrouk Amira, Anita Vincent, Jie Liew Melvin Wen, Tan Yang Fei, Venkatraman Subbu S
School of Materials Science and Engineering, Nanyang Technological University Singapore
Nanoscale Adv. 2020 Feb 5;2(3):1040-1045. doi: 10.1039/d0na00093k. eCollection 2020 Mar 17.
We present studies of protein (insulin) efflux rates from nano-sized core-shell systems with a gelled core and a lipid bilayer (nanolipogels). The efflux control mechanism is the manipulation of mesh size, and we show that diffusion control crosslinking is the dominant mechanism for efflux control. The concept is inspired by the macromolecular crowding effect in human cells, which may be considered as a physical network of undefined mesh size. Our bio-inspired system is made of chemically crosslinked water-swellable poly(ethylene glycol) diacrylate cores, whose mesh size can be manipulated to yield a quantifiable crowding effect that then leads to predictable release rates for biomacromolecules.
我们展示了对具有凝胶化核心和脂质双层(纳米脂质凝胶)的纳米级核壳系统中蛋白质(胰岛素)外排速率的研究。外排控制机制是对孔径大小的操控,并且我们表明扩散控制交联是外排控制的主要机制。这一概念受到人类细胞中大分子拥挤效应的启发,该效应可被视为一个孔径大小不确定的物理网络。我们受生物启发的系统由化学交联的水可膨胀聚乙二醇二丙烯酸酯核心构成,其孔径大小可被操控以产生可量化的拥挤效应,进而导致生物大分子的可预测释放速率。