Liew Wen Jie Melvin, Alkaff Syed Abdullah, Leong Sheng Yuan, Yee Marin Zhen Lin, Hou Han Wei, Czarny Bertrand
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Int J Mol Sci. 2024 Dec 23;25(24):13724. doi: 10.3390/ijms252413724.
mRNA-based vaccines against the COVID-19 pandemic have propelled the use of nucleic acids for drug delivery. Conventional lipid-based carriers, such as liposomes and nanolipogels, effectively encapsulate and deliver RNA but are hindered by issues such as premature burst release and immunogenicity. To address these challenges, cell membrane-coated nanoparticles offer a promising alternative. We developed a novel nanoparticle system using chitosan methacrylate-tripolyphosphate (CMATPP), which capitalizes on interactions involving membrane proteins at biointerfaces. Ionic crosslinking between chitosan methacrylate and tripolyphosphate facilitates the formation of nanoparticles amenable to coating with red blood cell (RBC) membranes, extracellular vesicles (EVs), and cell-derived nanovesicles (CDNs). Coating CMATPP nanoparticles with RBC membranes effectively mitigated the initial burst release of encapsulated small interfering RNA (siRNA), sustaining controlled release while preserving membrane proteins. This concept was extended to EVs, where CMATPP nanoparticles and CDNs were incorporated into a microfluidic device and subjected to electroporation to create hybrid CDN-CMATPP nanoparticles. Our findings demonstrate that CMATPP nanoparticles are a robust siRNA delivery system with suppressed burst release and enhanced membrane properties conferred by cell or vesicle membranes. Furthermore, the adaptation of the CDN-CMATPP nanoparticle formation in a microfluidic device suggests its potential for personalized therapies using diverse cell sources and increased throughput via automation. This study underscores the versatility and efficacy of CMATPP nanoparticles in RNA delivery, offering a pathway towards advanced therapeutic strategies that utilize biomimetic principles and microfluidic technologies.
针对新冠疫情的基于信使核糖核酸(mRNA)的疫苗推动了核酸在药物递送中的应用。传统的基于脂质的载体,如脂质体和纳米脂质凝胶,能有效包裹并递送核糖核酸(RNA),但存在诸如过早爆发释放和免疫原性等问题。为应对这些挑战,细胞膜包覆的纳米颗粒提供了一种有前景的替代方案。我们开发了一种使用甲基丙烯酸壳聚糖 - 三聚磷酸(CMATPP)的新型纳米颗粒系统,该系统利用了生物界面处涉及膜蛋白的相互作用。甲基丙烯酸壳聚糖与三聚磷酸之间的离子交联促进了纳米颗粒的形成,这些纳米颗粒适合用红细胞(RBC)膜、细胞外囊泡(EV)和细胞衍生纳米囊泡(CDN)进行包覆。用RBC膜包覆CMATPP纳米颗粒有效减轻了包裹的小干扰RNA(siRNA)的初始爆发释放,在保留膜蛋白的同时维持了控释。这一概念扩展到了EV,将CMATPP纳米颗粒和CDN整合到微流控装置中,并进行电穿孔以创建混合CDN - CMATPP纳米颗粒。我们的研究结果表明,CMATPP纳米颗粒是一种强大的siRNA递送系统,具有抑制爆发释放和由细胞膜或囊泡膜赋予的增强膜特性。此外,在微流控装置中对CDN - CMATPP纳米颗粒形成的改进表明其在使用多种细胞来源的个性化疗法以及通过自动化提高通量方面的潜力。这项研究强调了CMATPP纳米颗粒在RNA递送中的多功能性和有效性,为利用仿生原理和微流控技术的先进治疗策略提供了一条途径。