Pham Thuy Thi Thanh, Tran Duy Phu, Thierry Benjamin
Future Industries Institute, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia Mawson Lakes Campus Mawson Lakes South Australia 5095 Australia
Nanoscale Adv. 2019 Nov 5;1(12):4870-4877. doi: 10.1039/c9na00592g. eCollection 2019 Dec 3.
Nanostructured field effect transistor (FET) based sensors have emerged as a powerful bioanalytical technology. However, performance variations across multiple devices and between fabrication batches inevitably exist and present a significant challenge holding back the translation of this cutting-edge technology. We report an optimized and cost-effective fabrication process for high-performance indium oxide nanoribbon FET with a steep subthreshold swing of 80 mV per decade. Through systematic electrical characterizations of 57 indium oxide nanoribbon FETs from different batches, we demonstrate an optimal operation point within the subthreshold regime that mitigates the issue of device-to-device performance variation. A non-linear pH sensing of the fabricated indium oxide nanoribbon FETs is also presented.
基于纳米结构场效应晶体管(FET)的传感器已成为一种强大的生物分析技术。然而,多个器件之间以及不同制造批次之间不可避免地存在性能差异,这是阻碍这项前沿技术转化应用的重大挑战。我们报告了一种用于高性能氧化铟纳米带场效应晶体管的优化且具有成本效益的制造工艺,其亚阈值摆幅陡峭,每十倍频程为80毫伏。通过对来自不同批次的57个氧化铟纳米带场效应晶体管进行系统的电学表征,我们证明了在亚阈值区域内存在一个最佳工作点,可减轻器件间性能差异的问题。此外,还展示了所制造的氧化铟纳米带场效应晶体管的非线性pH传感特性。