Suppr超能文献

微等离子体合成的超小氧化镍纳米晶体,一种普遍存在的空穴传输材料。

Microplasma-synthesized ultra-small NiO nanocrystals, a ubiquitous hole transport material.

作者信息

Chakrabarti Supriya, Carolan Darragh, Alessi Bruno, Maguire Paul, Svrcek Vladimir, Mariotti Davide

机构信息

Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University Jordanstown, Newtownabbey Co. Antrim BT37 0QB UK.

Centre for Carbon Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Balapur P.O. Hyderabad 500005 India

出版信息

Nanoscale Adv. 2019 Oct 22;1(12):4915-4925. doi: 10.1039/c9na00299e. eCollection 2019 Dec 3.

Abstract

We report on a one-step hybrid atmospheric pressure plasma-liquid synthesis of ultra-small NiO nanocrystals (2 nm mean diameter), which exhibit strong quantum confinement. We show the versatility of the synthesis process and present the superior material characteristics of the nanocrystals (NCs). The band diagram of the NiO NCs, obtained experimentally, highlights ideal features for their implementation as a hole transport layer in a wide range of photovoltaic (PV) device architectures. As a proof of concept, we demonstrate the NiO NCs as a hole transport layer for three different PV device test architectures, which incorporate silicon quantum dots (Si-QDs), nitrogen-doped carbon quantum dots (N-CQDs) and perovskite as absorber layers. Our results clearly show ideal band alignment which could lead to improved carrier extraction into the metal contacts for all three solar cells. In addition, in the case of perovskite solar cells, the NiO NC hole transport layer acted as a protective layer preventing the degradation of halide perovskites from ambient moisture with a stable performance for >70 days. Our results also show unique characteristics that are highly suitable for future developments in all-inorganic 3 generation solar cells ( based on quantum dots) where quantum confinement can be used effectively to tune the band diagram to fit the energy level alignment requirements of different solar cell architectures.

摘要

我们报道了一种一步法混合常压等离子体-液体合成超小氧化镍纳米晶体(平均直径2纳米)的方法,这些纳米晶体表现出强烈的量子限制效应。我们展示了合成过程的多功能性,并呈现了纳米晶体(NCs)卓越的材料特性。通过实验获得的氧化镍纳米晶体的能带图突出了其在多种光伏(PV)器件结构中作为空穴传输层应用的理想特性。作为概念验证,我们展示了氧化镍纳米晶体作为三种不同光伏器件测试结构的空穴传输层,这三种结构分别将硅量子点(Si-QDs)、氮掺杂碳量子点(N-CQDs)和钙钛矿作为吸收层。我们的结果清楚地表明了理想的能带排列,这可能导致所有三种太阳能电池中载流子向金属接触的提取得到改善。此外,在钙钛矿太阳能电池的情况下,氧化镍纳米晶体空穴传输层起到了保护层的作用,防止卤化物钙钛矿因环境湿度而降解,其性能在70多天内保持稳定。我们的结果还显示了独特的特性,这些特性非常适合全无机第三代太阳能电池(基于量子点)的未来发展,在这种电池中,量子限制效应可以有效地用于调整能带图,以满足不同太阳能电池结构的能级排列要求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验