Suppr超能文献

用于可持续光电子学的生物分子衍生量子点。

Biomolecule-derived quantum dots for sustainable optoelectronics.

作者信息

Bhandari Satyapriya, Mondal Dibyendu, Nataraj S K, Balakrishna R Geetha

机构信息

Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India

出版信息

Nanoscale Adv. 2018 Dec 31;1(3):913-936. doi: 10.1039/c8na00332g. eCollection 2019 Mar 12.

Abstract

The diverse chemical functionalities and wide availability of biomolecules make them essential and cost-effective resources for the fabrication of zero-dimensional quantum dots (QDs, also known as bio-dots) with extraordinary properties, such as high photoluminescence quantum yield, tunable emission, photo and chemical stability, excellent aqueous solubility, scalability, and biocompatibility. The additional advantages of scalability, tunable optical features and presence of heteroatoms make them suitable alternatives to conventional metal-based semiconductor QDs in the field of bioimaging, biosensing, drug delivery, solar cells, photocatalysis, and light-emitting devices. Furthermore, a recent focus of the scientific community has been on QD-based sustainable optoelectronics due to the primary concern of partially mitigating the current energy demand without affecting the environment. Hence, it is noteworthy to focus on the sustainable optoelectronic applications of biomolecule-derived QDs, which have tunable optical features, biocompatibility and the scope of scalability. This review addresses the recent advances in the synthesis, properties, and optoelectronic applications of biomolecule-derived QDs (especially, carbon- and graphene-based QDs (C-QDs and G-QDs, respectively)) and discloses their merits and disadvantages, challenges and future prospects in the field of sustainable optoelectronics. In brief, the current review focuses on two major issues: (i) the advantages of two families of carbon nanomaterials ( C-QDs and G-QDs) derived from biomolecules of various categories, for instance (a) plant extracts including fruits, flowers, leaves, seeds, peels, and vegetables; (b) simple sugars and polysaccharides; (c) different amino acids and proteins; (d) nucleic acids, bacteria and fungi; and (e) biomasses and their waste and (ii) their applications as light-emitting diodes (LEDs), display systems, solar cells, photocatalysts and photo detectors. This review will not only bring a new paradigm towards the construction of advanced, sustainable and environment-friendly optoelectronic devices using natural resources and waste, but also provides critical insights to inspire researchers ranging from material chemists and chemical engineers to biotechnologists to search for exciting developments of this field and consequently make an advance step towards future bio-optoelectronics.

摘要

生物分子具有多样的化学功能且来源广泛,这使其成为制造具有非凡特性的零维量子点(QDs,也称为生物点)的重要且具有成本效益的资源,这些特性包括高光致发光量子产率、可调发射、光和化学稳定性、出色的水溶性、可扩展性和生物相容性。可扩展性、可调光学特性以及杂原子的存在等额外优势,使它们在生物成像、生物传感、药物递送、太阳能电池、光催化和发光器件领域成为传统金属基半导体量子点的合适替代品。此外,由于主要关注在不影响环境的情况下部分缓解当前能源需求,科学界最近的一个关注点是基于量子点的可持续光电子学。因此,关注具有可调光学特性、生物相容性和可扩展性的生物分子衍生量子点的可持续光电子应用是值得注意的。本综述阐述了生物分子衍生量子点(特别是碳基和石墨烯基量子点(分别为C-QDs和G-QDs))在合成、性质和光电子应用方面的最新进展,并揭示了它们在可持续光电子学领域的优缺点、挑战和未来前景。简而言之,当前综述关注两个主要问题:(i)源自各类生物分子的两类碳纳米材料(C-QDs和G-QDs)的优势,例如(a)植物提取物,包括水果、花朵、叶子、种子、果皮和蔬菜;(b)单糖和多糖;(c)不同的氨基酸和蛋白质;(d)核酸、细菌和真菌;以及(e)生物质及其废弃物;(ii)它们作为发光二极管(LED)、显示系统、太阳能电池、光催化剂和光电探测器的应用。本综述不仅将为利用自然资源和废弃物构建先进、可持续且环境友好的光电器件带来新的范例,还将提供关键见解,以激励从材料化学家、化学工程师到生物技术学家等研究人员探索该领域令人兴奋的发展,并因此朝着未来生物光电子学迈出前进的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d2/9473190/05ab79908e34/c8na00332g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验