文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于碳的糖基纳米平台:迈向下一代基于聚糖的多价探针。

Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes.

机构信息

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.

Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.

出版信息

Chem Soc Rev. 2022 Dec 12;51(24):9960-9985. doi: 10.1039/d2cs00741j.


DOI:10.1039/d2cs00741j
PMID:36416290
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9743786/
Abstract

Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.

摘要

细胞表面碳水化合物介导广泛的碳水化合物-蛋白质相互作用,这些相互作用是健康和疾病机制的关键。许多这样的相互作用具有多价性,为了在分子水平上研究这些过程,多年来已经开发了许多糖呈现平台。在这些平台中,碳纳米形式,如石墨烯及其衍生物、碳纳米管、碳点和富勒烯,已经成为非常有吸引力的生物相容性平台,能够模拟生物相关糖苷的多价呈现。本文综述了近年来在癌症、细菌和病毒感染等方面研究碳水化合物介导相互作用的最新碳基纳米平台及其应用的实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/5588a42c5052/d2cs00741j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/8cf79f231850/d2cs00741j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/0bb93fcffa47/d2cs00741j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/48ec8d8b0476/d2cs00741j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/b0b4102df444/d2cs00741j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/7587b7e2a8f1/d2cs00741j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/0fac34011e5f/d2cs00741j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/674ffc76dadd/d2cs00741j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/15ee1aed6262/d2cs00741j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6c07067cea25/d2cs00741j-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6f0f13ef161a/d2cs00741j-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/aa05360c1ce2/d2cs00741j-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/4082107d4e5f/d2cs00741j-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/39ce55787b21/d2cs00741j-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6e295d5adc0b/d2cs00741j-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/37c3defb140b/d2cs00741j-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/a1d95ed37ba5/d2cs00741j-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/4c35e6751c73/d2cs00741j-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/c7f466fd7ecb/d2cs00741j-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6846ae647c37/d2cs00741j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/92e29c9a1898/d2cs00741j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/5588a42c5052/d2cs00741j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/8cf79f231850/d2cs00741j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/0bb93fcffa47/d2cs00741j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/48ec8d8b0476/d2cs00741j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/b0b4102df444/d2cs00741j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/7587b7e2a8f1/d2cs00741j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/0fac34011e5f/d2cs00741j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/674ffc76dadd/d2cs00741j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/15ee1aed6262/d2cs00741j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6c07067cea25/d2cs00741j-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6f0f13ef161a/d2cs00741j-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/aa05360c1ce2/d2cs00741j-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/4082107d4e5f/d2cs00741j-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/39ce55787b21/d2cs00741j-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6e295d5adc0b/d2cs00741j-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/37c3defb140b/d2cs00741j-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/a1d95ed37ba5/d2cs00741j-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/4c35e6751c73/d2cs00741j-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/c7f466fd7ecb/d2cs00741j-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/6846ae647c37/d2cs00741j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/92e29c9a1898/d2cs00741j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa30/9743786/5588a42c5052/d2cs00741j-p3.jpg

相似文献

[1]
Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes.

Chem Soc Rev. 2022-12-12

[2]
Recent Advances on Multivalent Carbon Nanoform-Based Glycoconjugates.

Curr Med Chem. 2022

[3]
Multi-dimensional glycan microarrays with glyco-macroligands.

Glycoconj J. 2015-10

[4]
Glyconanoparticles as multifunctional and multimodal carbohydrate systems.

Chem Soc Rev. 2013-1-4

[5]
Octopus glycosides: multivalent molecular platforms for testing carbohydrate recognition and bacterial adhesion.

Carbohydr Res. 2015-2-11

[6]
Glyconanotechnology.

Chem Soc Rev. 2013-1-10

[7]
The Impact of Nanomaterial Morphology on Modulation of Carbohydrate-Protein Interactions.

ChemMedChem. 2023-9-15

[8]
Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes.

Molecules. 2018-1-7

[9]
Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin-Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly.

J Am Chem Soc. 2020-10-21

[10]
Glycan Carriers As Glycotools for Medicinal Chemistry Applications.

Curr Med Chem. 2019

引用本文的文献

[1]
Precision dendritic-supramolecular glycan assemblies for probing multivalent lectin interactions.

Chem Sci. 2025-6-25

[2]
Carbon Dots as an Emergent Class of Sustainable Antifungal Agents.

ACS Nano. 2025-7-15

[3]
Glycan-Silica Nanoparticles as Effective Inhibitors for Blocking Virus Infection.

ACS Appl Mater Interfaces. 2025-2-19

[4]
MR Imaging Reveals Dynamic Aggregation of Multivalent Glycoconjugates in Aqueous Solution.

Inorg Chem. 2024-12-30

[5]
Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties.

JACS Au. 2024-8-15

[6]
Emerging trends in CDs@hydrogels composites: from materials to applications.

Mikrochim Acta. 2024-5-29

[7]
Multicolor Photoluminescent Carbon Dots à La Carte for Biomedical Applications.

ACS Appl Mater Interfaces. 2023-9-27

[8]
Catanionic Vesicles as a Facile Scaffold to Display Natural N-Glycan Ligands for Probing Multivalent Carbohydrate-Lectin Interactions.

Bioconjug Chem. 2023-2-15

本文引用的文献

[1]
Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots.

Nanoscale Adv. 2019-7-15

[2]
Biomolecule-derived quantum dots for sustainable optoelectronics.

Nanoscale Adv. 2018-12-31

[3]
A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition.

Angew Chem Int Ed Engl. 2022-10-10

[4]
Measuring the refractive index and sub-nanometre surface functionalisation of nanoparticles in suspension.

Nanoscale. 2022-6-9

[5]
Topological and Multivalent Effects in Glycofullerene Oligomers as EBOLA Virus Inhibitors.

Int J Mol Sci. 2022-5-3

[6]
Eco-friendly synthesis of graphene-chitosan composite hydrogel as efficient adsorbent for Congo red.

RSC Adv. 2018-3-28

[7]
Specific capture of glycosylated graphene oxide by an asialoglycoprotein receptor: a strategic approach for liver-targeting.

RSC Adv. 2019-3-29

[8]
Small variations in reaction conditions tune carbon dot fluorescence.

Nanoscale. 2022-5-16

[9]
Mannose Receptor-Mediated Carbon Nanotubes as an Antigen Delivery System to Enhance Immune Response Both In Vitro and In Vivo.

Int J Mol Sci. 2022-4-11

[10]
Carbon dot-based fluorescent antibody nanoprobes as brain tumour glioblastoma diagnostics.

Nanoscale Adv. 2022-3-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索