Wang Xuejing, Jian Jie, Diaz-Amaya Susana, Kumah Cindy E, Lu Ping, Huang Jijie, Lim Daw Gen, Pol Vilas G, Youngblood Jeffrey P, Boltasseva Alexandra, Stanciu Lia A, O'Carroll Deirdre M, Zhang Xinghang, Wang Haiyan
Department of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
Department of Materials Science and Engineering, Rutgers University Piscataway New Jersey 08854 USA.
Nanoscale Adv. 2018 Nov 27;1(3):1045-1054. doi: 10.1039/c8na00306h. eCollection 2019 Mar 12.
Tunable plasmonic structure at the nanometer scale presents enormous opportunities for various photonic devices. In this work, we present a hybrid plasmonic thin film platform: , a vertically aligned Au nanopillar array grown inside a TiN matrix with controllable Au pillar density. Compared to single phase plasmonic materials, the presented tunable hybrid nanostructures attain optical flexibility including gradual tuning and anisotropic behavior of the complex dielectric function, resonant peak shifting and change of surface plasmon resonances (SPRs) in the UV-visible range, all confirmed by numerical simulations. The tailorable hybrid platform also demonstrates enhanced surface plasmon Raman response for Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements, and presents great potentials as designable hybrid platforms for tunable optical-based chemical sensing applications.
纳米尺度的可调谐等离子体结构为各种光子器件带来了巨大机遇。在这项工作中,我们展示了一种混合等离子体薄膜平台:在TiN基质中生长的具有可控金柱密度的垂直排列的金纳米柱阵列。与单相等离子体材料相比,所展示的可调谐混合纳米结构具有光学灵活性,包括复介电函数的逐渐调谐和各向异性行为、紫外 - 可见范围内共振峰的移动以及表面等离子体共振(SPR)的变化,所有这些都通过数值模拟得到证实。这种可定制的混合平台还展示了用于傅里叶变换红外光谱(FTIR)和光致发光(PL)测量的增强表面等离子体拉曼响应,并作为用于可调谐光学化学传感应用的可设计混合平台具有巨大潜力。