Pandit Bidhan, Agarwal Akanksha, Patel Priyanka, Sankapal Babasaheb R
Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India
Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS Place Eugène Bataillon Montpellier 34095, Cedex 5 France.
Nanoscale Adv. 2020 Dec 21;3(4):1057-1066. doi: 10.1039/d0na00893a. eCollection 2021 Feb 23.
Next-generation portable flexible electronic appliances require liquid-free energy storage supercapacitor devices to eliminate leakage and to support mechanical bending that is compatible with roll-to-roll technologies. Hence, a state-of-the-art process is presented to design a solid-state, wide-potential and flexible supercapacitor through the use of nano-pebbles of cerium selenide a simple successive ionic layer adsorption and reaction (SILAR) method that could allow an industry scalable route. We strongly believe that this is the first approach amongst physical and chemical routes not only for synthesizing cerium selenide in thin-film form but also using it for device-grade supercapacitor applications. The designed solid-state symmetric supercapacitor assembled from cerium selenide electrodes sandwiched by PVA-LiClO gel electrolyte attains a wide potential window of 1.8 V with capacitance of 48.8 F g at 2 mV s and reveals excellent power density of 4.89 kW kg at an energy density of 11.63 W h kg. The formed device is capable of 87% capacitive retention even at a mechanical bending angle of 175°. Lighting up a strip of 21 parallel connected red LEDs clearly demonstrates the practical use of the designed symmetric solid-state supercapacitor, aiming towards the commercialization of the product in the future.
下一代便携式柔性电子设备需要无液储能超级电容器装置,以消除漏电并支持与卷对卷技术兼容的机械弯曲。因此,本文提出了一种先进的工艺,通过使用硒化铈纳米颗粒,采用简单的连续离子层吸附和反应(SILAR)方法来设计一种固态、宽电位且柔性的超级电容器,这可能提供一条可实现工业规模生产的途径。我们坚信,这是物理和化学途径中的首个方法,不仅用于以薄膜形式合成硒化铈,还将其用于器件级超级电容器应用。由夹在PVA - LiClO凝胶电解质之间的硒化铈电极组装而成的设计固态对称超级电容器,在2 mV s时具有1.8 V的宽电位窗口和48.8 F g的电容,并且在能量密度为11.63 W h kg时显示出4.89 kW kg的优异功率密度。所形成的器件即使在175°的机械弯曲角度下仍能保持87%的电容。点亮一条由21个并联连接的红色发光二极管组成的灯带,清楚地展示了所设计的对称固态超级电容器的实际用途,目标是在未来实现该产品的商业化。