Misra Shikhar, Li Leigang, Gao Xingyao, Jian Jie, Qi Zhimin, Zemlyanov Dmitry, Wang Haiyan
School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
Birck Nanotechnology Center, Purdue University West Lafayette Indiana 47907 USA.
Nanoscale Adv. 2019 Nov 22;2(1):315-322. doi: 10.1039/c9na00566h. eCollection 2020 Jan 22.
Morphological control in oxide nanocomposites presents enormous opportunities for tailoring the physical properties. Here, we demonstrate the strong tunability of the magnetic and optical properties of Bi-based layered supercell (LSC) multiferroic structures, , BiAl Mn O by varying the Al : Mn molar ratio. The microstructure of the LSC structure evolves from a supercell structure to Al-rich pillars in the supercell structure as the Al molar ratio increases. The LSC structures present excellent multiferroic properties with preferred in-plane magnetic anisotropy, a tunable band gap and anisotropic dielectric permittivity, all attributed to the microstructure evolution and their anisotropic microstructure. Three different strain relaxation mechanisms are identified that are active during thin film growth. This study provides opportunities for microstructure and physical property tuning which can also be explored in other Bi-based LSC materials with tailorable multiferroic and optical properties.
氧化物纳米复合材料中的形态控制为定制物理性能提供了巨大机遇。在此,我们通过改变Al:Mn摩尔比,展示了Bi基层状超晶胞(LSC)多铁性结构BiAlMn O的磁性能和光学性能的强大可调性。随着Al摩尔比的增加,LSC结构的微观结构从超晶胞结构演变为超晶胞结构中富含Al的柱体。LSC结构具有优异的多铁性性能,具有面内优先磁各向异性、可调带隙和各向异性介电常数,所有这些都归因于微观结构的演变及其各向异性微观结构。确定了在薄膜生长过程中起作用的三种不同的应变弛豫机制。本研究为微观结构和物理性能调控提供了机会,这也可以在其他具有可定制多铁性和光学性能的Bi基LSC材料中进行探索。