SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
SuperSTEM Laboratory, STFC Daresbury Laboratories, Keckwick Lane, Warrington, WA4 4AD, UK.
Nanoscale Res Lett. 2015 Dec;10(1):407. doi: 10.1186/s11671-015-1116-8. Epub 2015 Oct 17.
The atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn(4+)-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions.
使用扫描透射电子显微镜成像和电子能量损失光谱研究了具有目标组成 Bi2FeMnO6 的 Bi(Fe,Mn)O3 (BFMO) 薄膜的原子结构和化学性质。结果表明,富 Mn(4+)反相界在薄膜基底处局部形核,然后形成近似三维金字塔状的阶梯结构。这些结构将材料限制在金字塔下方,使其处于高度应变状态,面外晶格参数接近 4.1 Å。在反相界包围的区域之外,面外晶格参数更接近 BFMO 的体相值。这表明,为了在尽可能多的薄膜中保留应变状态的同时提高薄膜的晶体完整性,需要找到防止反相界形核的方法。由于反相界似乎是由 Mn 与基底中的 Ti 相互作用形成的,一种可能的方法是在 SrTiO3 基底上生长一层纯 BiFeO3 的薄缓冲层,以最小化任何 Mn-Ti 相互作用。