Suppr超能文献

用于触觉人体特征识别的独立式可扩展力-柔软度双峰传感器阵列

Freestanding and Scalable Force-Softness Bimodal Sensor Arrays for Haptic Body-Feature Identification.

作者信息

Cui Zequn, Wang Wensong, Xia Huarong, Wang Changxian, Tu Jiaqi, Ji Shaobo, Tan Joel Ming Rui, Liu Zhihua, Zhang Feilong, Li Wenlong, Lv Zhisheng, Li Zheng, Guo Wei, Koh Nien Yue, Ng Kian Bee, Feng Xue, Zheng Yuanjin, Chen Xiaodong

机构信息

Innovative Center for Flexible Devices (iFLEX) & Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

出版信息

Adv Mater. 2022 Nov;34(47):e2207016. doi: 10.1002/adma.202207016. Epub 2022 Oct 21.

Abstract

Tactile technologies that can identify human body features are valuable in clinical diagnosis and human-machine interactions. Previously, cutting-edge tactile platforms have been able to identify structured non-living objects; however, identification of human body features remains challenging mainly because of the irregular contour and heterogeneous spatial distribution of softness. Here, freestanding and scalable tactile platforms of force-softness bimodal sensor arrays are developed, enabling tactile gloves to identify body features using machine-learning methods. The bimodal sensors are engineered by adding a protrusion on a piezoresistive pressure sensor, endowing the resistance signals with combined information of pressure and the softness of samples. The simple design enables 112 bimodal sensors to be integrated into a thin, conformal, and stretchable tactile glove, allowing the tactile information to be digitalized while hand skills are performed on the human body. The tactile glove shows high accuracy (98%) in identifying four body features of a real person, and four organ models (healthy and pathological) inside an abdominal simulator, demonstrating identification of body features of the bimodal tactile platforms and showing their potential use in future healthcare and robotics.

摘要

能够识别人体特征的触觉技术在临床诊断和人机交互中具有重要价值。此前,前沿的触觉平台已能够识别结构化的无生命物体;然而,人体特征的识别仍然具有挑战性,主要原因在于柔软度的不规则轮廓和异质空间分布。在此,开发了独立且可扩展的力 - 柔软度双峰传感器阵列触觉平台,使触觉手套能够使用机器学习方法识别身体特征。双峰传感器通过在压阻式压力传感器上添加一个突出部分进行设计,使电阻信号具有压力和样品柔软度的组合信息。这种简单的设计使得112个双峰传感器能够集成到一个薄的、贴合的且可拉伸的触觉手套中,在对人体进行手部操作时将触觉信息数字化。该触觉手套在识别真人的四种身体特征以及腹部模拟器内的四种器官模型(健康和病理)时显示出高精度(98%),证明了双峰触觉平台对身体特征的识别能力,并展示了它们在未来医疗保健和机器人技术中的潜在用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验