ENCRYPTO, Technical University of Darmstadt, Darmstadt, Germany.
Computational Biology and Simulation group, Technical University of Darmstadt, Darmstadt, Germany.
BMC Med Inform Decis Mak. 2022 Sep 22;22(1):253. doi: 10.1186/s12911-022-01994-4.
The kidney exchange problem (KEP) addresses the matching of patients in need for a replacement organ with compatible living donors. Ideally many medical institutions should participate in a matching program to increase the chance for successful matches. However, to fulfill legal requirements current systems use complicated policy-based data protection mechanisms that effectively exclude smaller medical facilities to participate. Employing secure multi-party computation (MPC) techniques provides a technical way to satisfy data protection requirements for highly sensitive personal health information while simultaneously reducing the regulatory burdens.
We have designed, implemented, and benchmarked SPIKE, a secure MPC-based privacy-preserving KEP protocol which computes a locally optimal solution by finding matching donor-recipient pairs in a graph structure. SPIKE matches 40 pairs in cycles of length 2 in less than 4 min and outperforms the previous state-of-the-art protocol by a factor of [Formula: see text] in runtime while providing medically more robust solutions.
We show how to solve the KEP in a robust and privacy-preserving manner achieving significantly more practical performance than the current state-of-the-art (Breuer et al., WPES'20 and CODASPY'22). The usage of MPC techniques fulfills many data protection requirements on a technical level, allowing smaller health care providers to directly participate in a kidney exchange with reduced legal processes. As sensitive data are not leaving the institutions' network boundaries, the patient data underlie a higher level of protection than in the currently employed (centralized) systems. Furthermore, due to reduced legal barriers, the proposed decentralized system might be simpler to implement in a transnational, intereuropean setting with mixed (national) data protecion laws.
肾脏交换问题(KEP)旨在将需要替代器官的患者与相容的活体供者进行匹配。理想情况下,许多医疗机构都应该参与匹配计划,以增加成功匹配的机会。然而,为了满足法律要求,当前的系统使用复杂的基于政策的数据保护机制,有效地将较小的医疗机构排除在外,使其无法参与。采用安全多方计算(MPC)技术为满足高度敏感的个人健康信息的数据保护要求提供了一种技术途径,同时降低了监管负担。
我们设计、实现并基准测试了 SPIKE,这是一种基于安全多方计算的隐私保护 KEP 协议,通过在图结构中找到匹配的供者-受者对来计算局部最优解。SPIKE 在不到 4 分钟的时间内完成了 40 对长度为 2 的循环匹配,并且在运行时的性能比之前的最先进协议提高了[公式:见正文],同时提供了更稳健的医疗解决方案。
我们展示了如何以稳健和隐私保护的方式解决 KEP 问题,实现了比当前最先进技术(Breuer 等人,WPES'20 和 CODASPY'22)显著更高的实际性能。MPC 技术的使用在技术层面上满足了许多数据保护要求,允许较小的医疗机构在减少法律程序的情况下直接参与肾脏交换。由于敏感数据不会离开医疗机构的网络边界,因此患者数据受到比当前使用的(集中式)系统更高水平的保护。此外,由于法律障碍的减少,所提出的去中心化系统在具有混合(国家)数据保护法的跨国、跨欧环境中可能更容易实施。