Suppr超能文献

迈向实用的隐私保护全基因组关联研究。

Towards practical privacy-preserving genome-wide association study.

机构信息

imec-COSIC, Department of Electrical Engineering, KU Leuven, Leuven, Belgium.

ABRR, Saxion University of Applied Sciences, Enschede, The Netherlands.

出版信息

BMC Bioinformatics. 2018 Dec 20;19(1):537. doi: 10.1186/s12859-018-2541-3.

Abstract

BACKGROUND

The deployment of Genome-wide association studies (GWASs) requires genomic information of a large population to produce reliable results. This raises significant privacy concerns, making people hesitate to contribute their genetic information to such studies.

RESULTS

We propose two provably secure solutions to address this challenge: (1) a somewhat homomorphic encryption (HE) approach, and (2) a secure multiparty computation (MPC) approach. Unlike previous work, our approach does not rely on adding noise to the input data, nor does it reveal any information about the patients. Our protocols aim to prevent data breaches by calculating the χ statistic in a privacy-preserving manner, without revealing any information other than whether the statistic is significant or not. Specifically, our protocols compute the χ statistic, but only return a yes/no answer, indicating significance. By not revealing the statistic value itself but only the significance, our approach thwarts attacks exploiting statistic values. We significantly increased the efficiency of our HE protocols by introducing a new masking technique to perform the secure comparison that is necessary for determining significance.

CONCLUSIONS

We show that full-scale privacy-preserving GWAS is practical, as long as the statistics can be computed by low degree polynomials. Our implementations demonstrated that both approaches are efficient. The secure multiparty computation technique completes its execution in approximately 2 ms for data contributed by one million subjects.

摘要

背景

全基因组关联研究(GWAS)的部署需要大量人群的基因组信息才能得出可靠的结果。这引发了重大的隐私问题,使得人们不愿意将自己的遗传信息贡献给此类研究。

结果

我们提出了两种可证明安全的解决方案来应对这一挑战:(1)一种部分同态加密(HE)方法,和(2)一种安全多方计算(MPC)方法。与之前的工作不同,我们的方法不依赖于向输入数据添加噪声,也不透露任何关于患者的信息。我们的协议旨在通过以隐私保护的方式计算 χ 统计量来防止数据泄露,而不透露除统计量是否显著之外的任何信息。具体来说,我们的协议计算 χ 统计量,但只返回是/否的答案,表明是否显著。通过不透露统计值本身,而只透露显著性,我们的方法挫败了利用统计值进行的攻击。我们通过引入一种新的屏蔽技术来执行必要的安全比较,从而显著提高了我们的 HE 协议的效率,这种安全比较对于确定显著性是必要的。

结论

只要统计量可以由低度数多项式计算,我们就表明全规模的隐私保护 GWAS 是可行的。我们的实现表明,这两种方法都很有效。安全多方计算技术完成了对来自一百万个参与者的数据的执行,大约需要 2 毫秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f6a/6302495/a9177849dd63/12859_2018_2541_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验