Suppr超能文献

用于脑电图情感识别的深度稀疏自动编码器和递归神经网络

Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition.

作者信息

Li Qi, Liu Yunqing, Shang Yujie, Zhang Qiong, Yan Fei

机构信息

Department of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130012, China.

出版信息

Entropy (Basel). 2022 Aug 25;24(9):1187. doi: 10.3390/e24091187.

Abstract

Recently, emotional electroencephalography (EEG) has been of great importance in brain-computer interfaces, and it is more urgent to realize automatic emotion recognition. The EEG signal has the disadvantages of being non-smooth, non-linear, stochastic, and susceptible to background noise. Additionally, EEG signal processing network models have the disadvantages of a large number of parameters and long training time. To address the above issues, a novel model is presented in this paper. Initially, a deep sparse autoencoder network (DSAE) was used to remove redundant information from the EEG signal and reconstruct its underlying features. Further, combining a convolutional neural network (CNN) with long short-term memory (LSTM) can extract relevant features from task-related features, mine the correlation between the 32 channels of the EEG signal, and integrate contextual information from these frames. The proposed DSAE + CNN + LSTM (DCRNN) model was experimented with on the public dataset DEAP. The classification accuracies of valence and arousal reached 76.70% and 81.43%, respectively. Meanwhile, we conducted experiments with other comparative methods to further demonstrate the effectiveness of the DCRNN method.

摘要

近年来,情感脑电图(EEG)在脑机接口中具有重要意义,实现自动情感识别也变得更加迫切。EEG信号具有不平稳、非线性、随机且易受背景噪声影响的缺点。此外,EEG信号处理网络模型存在参数数量多和训练时间长的问题。为了解决上述问题,本文提出了一种新型模型。首先,使用深度稀疏自动编码器网络(DSAE)去除EEG信号中的冗余信息并重建其潜在特征。进一步地,将卷积神经网络(CNN)与长短期记忆网络(LSTM)相结合,可以从与任务相关的特征中提取相关特征,挖掘EEG信号32个通道之间的相关性,并整合这些帧的上下文信息。所提出的DSAE + CNN + LSTM(DCRNN)模型在公开数据集DEAP上进行了实验。效价和唤醒度的分类准确率分别达到了76.70%和81.43%。同时,我们用其他比较方法进行了实验,以进一步证明DCRNN方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56e/9497873/64e6695e6851/entropy-24-01187-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验