Suppr超能文献

基于脑电图的情感识别与相似性学习网络

EEG-Based Emotion Recognition with Similarity Learning Network.

作者信息

Wang Yixin, Qiu Shuang, Li Jinpeng, Ma Xuelin, Liang Zhiyue, Li Hui, He Huiguang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1209-1212. doi: 10.1109/EMBC.2019.8857499.

Abstract

Emotion recognition is an important field of research in Affective Computing (AC), and the EEG signal is one of useful signals in detecting and evaluating emotion. With the development of the deep learning, the neural network is widely used in constructing the EEG-based emotion recognition model. In this paper, we propose an effective similarity learning network, on the basis of a bidirectional long short term memory (BLSTM) network. The pairwise constrain loss will help to learn a more discriminative embedding feature space, combined with the traditional supervised classification loss function. The experiment result demonstrates that the pairwise constrain loss can significantly improve the emotion classification performance. In addition, our method outperforms the state-of-the-art emotion classification approaches in the benchmark EEG emotion dataset-SEED dataset, which get a mean accuracy of 94.62%.

摘要

情感识别是情感计算(AC)中的一个重要研究领域,而脑电图(EEG)信号是检测和评估情感的有用信号之一。随着深度学习的发展,神经网络被广泛应用于构建基于EEG的情感识别模型。在本文中,我们基于双向长短期记忆(BLSTM)网络提出了一种有效的相似性学习网络。成对约束损失将有助于学习更具判别力的嵌入特征空间,并结合传统的监督分类损失函数。实验结果表明,成对约束损失可以显著提高情感分类性能。此外,我们的方法在基准EEG情感数据集——SEED数据集上优于当前最先进的情感分类方法,该方法的平均准确率为94.62%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验