Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Int J Mol Sci. 2022 Sep 16;23(18):10827. doi: 10.3390/ijms231810827.
Stimulated Raman Scattering Microscopy (SRS) is a powerful tool for label-free detailed recognition and investigation of the cellular and subcellular structures of living cells. Determining subcellular protein localization from the cell level of SRS images is one of the basic goals of cell biology, which can not only provide useful clues for their functions and biological processes but also help to determine the priority and select the appropriate target for drug development. However, the bottleneck in predicting subcellular protein locations of SRS cell imaging lies in modeling complicated relationships concealed beneath the original cell imaging data owing to the spectral overlap information from different protein molecules. In this work, a multiple parallel fusion network, MPFnetwork, is proposed to study the subcellular locations from SRS images. This model used a multiple parallel fusion model to construct feature representations and combined multiple nonlinear decomposing algorithms as the automated subcellular detection method. Our experimental results showed that the MPFnetwork could achieve over 0.93 dice correlation between estimated and true fractions on SRS lung cancer cell datasets. In addition, we applied the MPFnetwork method to cell images for label-free prediction of several different subcellular components simultaneously, rather than using several fluorescent labels. These results open up a new method for the time-resolved study of subcellular components in different cells, especially cancer cells.
受激拉曼散射显微镜(SRS)是一种用于无标记详细识别和研究活细胞的细胞和亚细胞结构的强大工具。从 SRS 图像的细胞水平确定亚细胞蛋白质定位是细胞生物学的基本目标之一,这不仅可以为其功能和生物过程提供有用的线索,还有助于确定药物开发的优先级和选择合适的目标。然而,在预测 SRS 细胞成像中亚细胞蛋白质位置方面的瓶颈在于,由于来自不同蛋白质分子的光谱重叠信息,模型难以对原始细胞成像数据下隐藏的复杂关系进行建模。在这项工作中,提出了一种多平行融合网络(MPFnetwork)来研究 SRS 图像中的亚细胞位置。该模型使用多平行融合模型来构建特征表示,并结合多个非线性分解算法作为自动化亚细胞检测方法。我们的实验结果表明,MPFnetwork 可以在 SRS 肺癌细胞数据集上实现估计和真实分数之间超过 0.93 的骰子相关系数。此外,我们将 MPFnetwork 方法应用于细胞图像,实现了对几种不同亚细胞成分的无标记预测,而无需使用几种荧光标记。这些结果为在不同细胞(特别是癌细胞)中进行亚细胞成分的时间分辨研究开辟了一种新方法。