文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光学显微镜中基于深度学习的图像处理

Deep learning-based image processing in optical microscopy.

作者信息

Melanthota Sindhoora Kaniyala, Gopal Dharshini, Chakrabarti Shweta, Kashyap Anirudh Ameya, Radhakrishnan Raghu, Mazumder Nirmal

机构信息

Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India.

Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India.

出版信息

Biophys Rev. 2022 Apr 6;14(2):463-481. doi: 10.1007/s12551-022-00949-3. eCollection 2022 Apr.


DOI:10.1007/s12551-022-00949-3
PMID:35528030
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9043085/
Abstract

Optical microscopy has emerged as a key driver of fundamental research since it provides the ability to probe into imperceptible structures in the biomedical world. For the detailed investigation of samples, a high-resolution image with enhanced contrast and minimal damage is preferred. To achieve this, an automated image analysis method is preferable over manual analysis in terms of both speed of acquisition and reduced error accumulation. In this regard, deep learning (DL)-based image processing can be highly beneficial. The review summarises and critiques the use of DL in image processing for the data collected using various optical microscopic techniques. In tandem with optical microscopy, DL has already found applications in various problems related to image classification and segmentation. It has also performed well in enhancing image resolution in smartphone-based microscopy, which in turn enablse crucial medical assistance in remote places.

摘要

光学显微镜已成为基础研究的关键驱动力,因为它能够探测生物医学领域中难以察觉的结构。对于样品的详细研究,人们更倾向于具有增强对比度和最小损伤的高分辨率图像。为此,在采集速度和减少误差积累方面,自动图像分析方法优于手动分析。在这方面,基于深度学习(DL)的图像处理可能非常有益。这篇综述总结并评论了深度学习在图像处理中的应用,这些图像数据是使用各种光学显微镜技术收集的。与光学显微镜相结合,深度学习已经在与图像分类和分割相关的各种问题中得到应用。它在提高基于智能手机的显微镜的图像分辨率方面也表现出色,这反过来又能在偏远地区提供关键的医疗帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/9f71b1d60717/12551_2022_949_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/29817139ca3a/12551_2022_949_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/20ea757aa335/12551_2022_949_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/ef965c9901ba/12551_2022_949_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/0ea0f89e91e0/12551_2022_949_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/684f5a82c6c3/12551_2022_949_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/2d997b4c44bc/12551_2022_949_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/90e07a07b83a/12551_2022_949_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/9f71b1d60717/12551_2022_949_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/29817139ca3a/12551_2022_949_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/20ea757aa335/12551_2022_949_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/ef965c9901ba/12551_2022_949_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/0ea0f89e91e0/12551_2022_949_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/684f5a82c6c3/12551_2022_949_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/2d997b4c44bc/12551_2022_949_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/90e07a07b83a/12551_2022_949_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1929/9043085/9f71b1d60717/12551_2022_949_Fig8_HTML.jpg

相似文献

[1]
Deep learning-based image processing in optical microscopy.

Biophys Rev. 2022-4-6

[2]
Portable, Automated and Deep-Learning-Enabled Microscopy for Smartphone-Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review.

Small Methods. 2023-1

[3]
Deep Learning-Based Single-Cell Optical Image Studies.

Cytometry A. 2020-3

[4]
Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.

J Microsc. 2019-9-22

[5]
Automated Microscopy Image Segmentation and Analysis with Machine Learning.

Methods Mol Biol. 2022

[6]
A survey on applications of deep learning in microscopy image analysis.

Comput Biol Med. 2021-7

[7]
Tile-based microscopic image processing for malaria screening using a deep learning approach.

BMC Med Imaging. 2023-3-22

[8]
Deep learning provides high accuracy in automated chondrocyte viability assessment in articular cartilage using nonlinear optical microscopy.

Biomed Opt Express. 2021-4-16

[9]
Unraveling the complexity of Optical Coherence Tomography image segmentation using machine and deep learning techniques: A review.

Comput Med Imaging Graph. 2023-9

[10]
Generative and discriminative model-based approaches to microscopic image restoration and segmentation.

Microscopy (Oxf). 2020-4-8

引用本文的文献

[1]
Enhancing AI microscopy for foodborne bacterial classification using adversarial domain adaptation to address optical and biological variability.

Front Artif Intell. 2025-8-12

[2]
Advancing Multicolor Super-Resolution Volume Imaging: Illuminating Complex Cellular Dynamics.

JACS Au. 2025-6-9

[3]
Cyber-physical security of biochips: A perspective.

Biomicrofluidics. 2025-5-29

[4]
Microscope Upcycling: Transforming legacy microscopes into automated cloud-integrated imaging systems.

HardwareX. 2025-3-19

[5]
A novel method (RIM-Deep) for enhancing imaging depth and resolution stability of deep cleared tissue in inverted confocal microscopy.

Elife. 2025-4-7

[6]
Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues.

J Imaging. 2025-2-15

[7]
Quantifying Monomer-Dimer Distribution of Nanoparticles from Uncorrelated Optical Images Using Deep Learning.

ACS Omega. 2025-1-3

[8]
Effect of shear rate on early adhesion dynamics monitored by deep learning.

Biofilm. 2024-11-16

[9]
Image processing tools for petabyte-scale light sheet microscopy data.

Nat Methods. 2024-12

[10]
Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries.

Fluids Barriers CNS. 2024-10-14

本文引用的文献

[1]
Deep learning-enhanced light-field imaging with continuous validation.

Nat Methods. 2021-5

[2]
Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.

Opt Express. 2020-9-28

[3]
Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy.

Biomed Opt Express. 2020-7-21

[4]
Noise-free quantitative phase imaging in Gabor holography with conditional generative adversarial network.

Opt Express. 2020-8-31

[5]
High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition.

Sci Rep. 2020-8-4

[6]
Deep learning-enhanced fluorescence microscopy via degeneration decoupling.

Opt Express. 2020-5-11

[7]
Resolving challenges in deep learning-based analyses of histopathological images using explanation methods.

Sci Rep. 2020-4-14

[8]
Deep learning a boon for biophotonics?

J Biophotonics. 2020-6

[9]
Applications of Deep Learning for Dense Scenes Analysis in Agriculture: A Review.

Sensors (Basel). 2020-3-10

[10]
Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning.

Nat Methods. 2019-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索