Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
Nat Methods. 2022 Sep;19(9):1097-1108. doi: 10.1038/s41592-022-01595-z. Epub 2022 Sep 6.
Rigorously comparing gene expression and chromatin accessibility in the same single cells could illuminate the logic of how coupling or decoupling of these mechanisms regulates fate commitment. Here we present MIRA, probabilistic multimodal models for integrated regulatory analysis, a comprehensive methodology that systematically contrasts transcription and accessibility to infer the regulatory circuitry driving cells along cell state trajectories. MIRA leverages topic modeling of cell states and regulatory potential modeling of individual gene loci. MIRA thereby represents cell states in an efficient and interpretable latent space, infers high-fidelity cell state trees, determines key regulators of fate decisions at branch points and exposes the variable influence of local accessibility on transcription at distinct loci. Applied to epidermal differentiation and embryonic brain development from two different multimodal platforms, MIRA revealed that early developmental genes were tightly regulated by local chromatin landscape whereas terminal fate genes were titrated without requiring extensive chromatin remodeling.
严格比较同一单细胞中的基因表达和染色质可及性,可以阐明这些机制的耦合或解耦如何调节命运决定的逻辑。在这里,我们提出了 MIRA,即用于综合调控分析的概率多模态模型,这是一种全面的方法,可系统地对比转录和可及性,以推断驱动细胞沿着细胞状态轨迹的调控电路。MIRA 利用细胞状态的主题建模和单个基因座的调控潜力建模。MIRA 因此以高效且可解释的潜在空间表示细胞状态,推断出高保真的细胞状态树,确定分支点处命运决定的关键调节剂,并揭示了局部可及性对不同基因座转录的可变影响。将 MIRA 应用于来自两个不同多模态平台的表皮分化和胚胎大脑发育,结果表明,早期发育基因受到局部染色质景观的严格调控,而终端命运基因则无需广泛的染色质重塑即可进行滴定。